Skip to main content

Analyzing Centrioles and Cilia by Expansion Microscopy

  • Protocol
  • First Online:
Cell Cycle Oscillators

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2329))

Abstract

Expansion microscopy is an imaging method based on isotropic physical expansion of biological samples, which improves optical resolution and allows imaging of subresolutional cellular components by conventional microscopes. Centrioles are small microtubule-based cylindrical structures that build centrosomes and cilia, two organelles essential for vertebrates. Due to a centriole’s small size, electron microscopy has traditionally been used to study centriole length and ultrastructural features. Recently, expansion microscopy has been successfully used as an affordable and accessible alternative to electron microscopy in the analysis of centriole and cilia length and structural features. Here, we describe an expansion microscopy approach for the analysis of centrioles and cilia in large populations of mammalian adherent and nonadherent cells and multiciliated cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schermelleh L et al (2019) Super-resolution microscopy demystified. Nat Cell Biol 21(1):72–84

    Article  CAS  Google Scholar 

  2. Bates M, Huang B, Zhuang X (2008) Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes. Curr Opin Chem Biol 12(5):505–514

    Article  CAS  Google Scholar 

  3. Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190(2):165–175

    Article  CAS  Google Scholar 

  4. Asano SM et al (2018) Expansion microscopy: protocols for imaging proteins and RNA in cells and tissues. Curr Protoc Cell Biol 80(1):e56

    Article  Google Scholar 

  5. Chen F, Tillberg PW, Boyden ES (2015) Optical imaging. Expansion microscopy. Science 347(6221):543–548

    Article  CAS  Google Scholar 

  6. Chozinski TJ et al (2016) Expansion microscopy with conventional antibodies and fluorescent proteins. Nat Methods 13(6):485–488

    Article  CAS  Google Scholar 

  7. Ku T et al (2016) Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol 34(9):973–981

    Article  CAS  Google Scholar 

  8. Tillberg PW, Chen F (2019) Expansion microscopy: scalable and convenient super-resolution microscopy. Annu Rev Cell Dev Biol 35:683–701

    Article  CAS  Google Scholar 

  9. Gupta A, Kitagawa D (2018) Ultrastructural diversity between centrioles of eukaryotes. J Biochem 164(1):1–8

    Article  CAS  Google Scholar 

  10. Vorobjev IA, Chentsov Yu S (1982) Centrioles in the cell cycle. I Epithelial cells. J Cell Biol 93(3):938–949

    Article  CAS  Google Scholar 

  11. Anderson RGW (1972) The three-dimensional structure of the basal body from the Rhesus monkey oviduct. J Cell Biol 54(2):246–265

    Article  CAS  Google Scholar 

  12. Mennella V et al (2012) Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization. Nat Cell Biol 14(11):1159–1168

    Article  CAS  Google Scholar 

  13. Mennella V et al (2014) Amorphous no more: subdiffraction view of the pericentriolar material architecture. Trends Cell Biol 24(3):188–197

    Article  CAS  Google Scholar 

  14. Lawo S et al (2012) Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material. Nat Cell Biol 14(11):1148–1158

    Article  CAS  Google Scholar 

  15. Sonnen KF et al (2012) 3D-structured illumination microscopy provides novel insight into architecture of human centrosomes. Biol Open 1(10):965–976

    Article  CAS  Google Scholar 

  16. Nigg EA, Raff JW (2009) Centrioles, centrosomes, and cilia in health and disease. Cell 139(4):663–678

    Article  CAS  Google Scholar 

  17. Nigg EA, Schnerch D, Ganier O (2017) Impact of centrosome aberrations on chromosome segregation and tissue architecture in cancer. Cold Spring Harb Symp Quant Biol 82:137–144

    Article  Google Scholar 

  18. Bettencourt-Dias M et al (2011) Centrosomes and cilia in human disease. Trends Genet 27(8):307–315

    Article  CAS  Google Scholar 

  19. Wang L, Dynlacht BD (2018) The regulation of cilium assembly and disassembly in development and disease. Development 145(18):dev151407

    Article  Google Scholar 

  20. Sahabandu N et al (2019) Expansion microscopy for the analysis of centrioles and cilia. J Microsc 276(3):145–159

    Article  CAS  Google Scholar 

  21. Kong D et al (2020) Prolonged mitosis results in structurally aberrant and over-elongated centrioles. J Cell Biol 219(6):e201910019

    Article  CAS  Google Scholar 

  22. Rose GG et al (1958) A cellophane-strip technique for culturing tissue in multipurpose culture chambers. J Biophys Biochem Cytol 4(6):761–764

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank members of LPDS and Dr. Valentin Magidson for critical reading of the manuscript, and Dr. Catherine Sullenberger for acquiring images used in Fig. 3d. This work was supported by the Intramural Research Program of the National Institutes of Health (NIH), National Cancer Institute to J.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jadranka Loncarek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kong, D., Loncarek, J. (2021). Analyzing Centrioles and Cilia by Expansion Microscopy. In: Coutts, A.S., Weston, L. (eds) Cell Cycle Oscillators . Methods in Molecular Biology, vol 2329. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1538-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1538-6_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1537-9

  • Online ISBN: 978-1-0716-1538-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics