Skip to main content

Assaying Cell Cycle Progression via Flow Cytometry in CRISPR/Cas9-Treated Cells

  • Protocol
  • First Online:
Cell Cycle Oscillators

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2329))

Abstract

CRISPR/Cas9 system is a powerful technique for genome editing and engineering but obtaining a sizeable population of edited cells can be challenging for some cell types. CRISPR/Cas9-induced cell cycle arrest is a possible cause of this barrier to efficient editing; thus, it is desirable to know the cell cycle progression profile of any given cell line or type of interest resulting from CRISPR/Cas9 treatment. Here we describe a flow cytometry-based assay that enables the determination of cell cycle progression in the presence of CRISPR/Cas9 treatment, in addition to the transfection and expression efficiencies of Cas9 vectors. This assay can also easily determine the effect of various interventions on obtaining a larger pool of Cas9-treated cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci 93:1156–1160

    Article  CAS  Google Scholar 

  2. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761

    Article  CAS  Google Scholar 

  3. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  Google Scholar 

  4. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  Google Scholar 

  5. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  Google Scholar 

  6. Haapaniemi E, Botla S, Persson J, Schmierer B, Taipale J (2018) CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med 24:927–930

    Article  CAS  Google Scholar 

  7. Ihry RJ, Worringer KA, Salick MR, Frias E, Ho D, Theriault K, Kommineni S, Chen J, Sondey M, Ye C et al (2018) p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells. Nat Med 24:939–946

    Article  CAS  Google Scholar 

  8. van den Berg J, Manjón GA, Kielbassa K, Feringa FM, Freire R, Medema RH (2018) A limited number of double-strand DNA breaks is sufficient to delay cell cycle progression. Nucleic Acids Res. https://doi.org/10.1093/nar/gky786

  9. Geisinger JM, Stearns T (2020) CRISPR/Cas9 treatment causes extended TP-53 dependent cell cycle arrest in human cells. Nucleic Acids Res 48(16):9067–9081

    Article  CAS  Google Scholar 

  10. Aguirre AJ, Meyers RM, Weir BA, Vazquez F, Zhang C-Z, Ben-David U, Cook A, Ha G, Harrington WF, Doshi MB et al (2016) Genomic copy number dictates a gene-independent cell response to CRISPR/Cas9 targeting. Cancer Discov 6:914–929

    Article  CAS  Google Scholar 

  11. Kaulich M, Lee YJ, Lönn P, Springer AD, Meade BR, Dowdy SF (2015) Efficient CRISPR-rAAV engineering of endogenous genes to study protein function by allele-specific RNAi. Nucleic Acids Res 43:e45–e45

    Article  Google Scholar 

  12. Byrne SM, Ortiz L, Mali P, Aach J, Church GM (2015) Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells. Nucleic Acids Res 43:e21–e21

    Article  Google Scholar 

  13. Makino S, Fukumura R, Gondo Y (2016) Illegitimate translation causes unexpected gene expression from on-target out-of-frame alleles created by CRISPR-Cas9. Sci Rep 6:39608

    Article  CAS  Google Scholar 

  14. Rodriguez-Rodriguez J-A, Lewis C, McKinley KL, Sikirzhytski V, Corona J, Maciejowski J, Khodjakov A, Cheeseman IM, Jallepalli PV (2018) Distinct roles of RZZ and Bub1-KNL1 in mitotic checkpoint signaling and kinetochore expansion. Curr Biol 28:3422–3429.e5

    Article  CAS  Google Scholar 

  15. Brown KR, Mair B, Soste M, Moffat J (2019) CRISPR screens are feasible in TP53 wild-type cells. Mol Syst Biol 15(8):e8679

    Article  Google Scholar 

  16. Haapaniemi E, Botla S, Persson J, Schmierer B, Taipale J (2019) Reply to “CRISPR screens are feasible in TP53 wild-type cells”. Mol Syst Biol 15(8):e9059

    Article  Google Scholar 

  17. Merkle FT, Ghosh S, Kamitaki N, Mitchell J, Avior Y, Mello C, Kashin S, Mekhoubad S, Ilic D, Charlton M et al (2017) Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations. Nature 545:229–233

    Article  CAS  Google Scholar 

  18. Salic A, Mitchison TJ (2008) A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci 105:2415–2420

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Stearns .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Geisinger, J.M., Stearns, T. (2021). Assaying Cell Cycle Progression via Flow Cytometry in CRISPR/Cas9-Treated Cells. In: Coutts, A.S., Weston, L. (eds) Cell Cycle Oscillators . Methods in Molecular Biology, vol 2329. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1538-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1538-6_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1537-9

  • Online ISBN: 978-1-0716-1538-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics