Skip to main content

Assessing Global Circadian Rhythm Through Single-Time-Point Transcriptomic Analysis

  • Protocol
  • First Online:
Modeling Transcriptional Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2328))

Abstract

Plant circadian clock has emerged as a central hub integrating various endogenous signals and exogenous stimuli to coordinate diverse plant physiological processes. The intimate relationship between crop circadian clock and key agronomic traits has been increasingly appreciated. However, due to the lack of fundamental genetic resources, more complex genome structures and the high cost of large-scale time-course circadian expression profiling, our understanding of crop circadian clock is still very limited. To study plant circadian clock, conventional methods rely on time-course experiments, which can be expensive and time-consuming. Different from these conventional approaches, the molecular timetable method can estimate the global rhythm using single-time-point transcriptome datasets, which has shown great promises in accelerating studies of crop circadian clock. Here we describe the application of the molecular timetable method in soybean and provide key technical caveats as well as related R Markdown scripts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yakir E, Hilman D, Harir Y, Green RM (2007) Regulation of output from the plant circadian clock. FEBS J 274(2):335–345. https://doi.org/10.1111/j.1742-4658.2006.05616.x

    Article  CAS  PubMed  Google Scholar 

  2. Bendix C, Marshall CM, Harmon FG (2015) Circadian clock genes universally control key agricultural traits. Mol Plant 8(8):1135–1152. https://doi.org/10.1016/j.molp.2015.03.003

    Article  CAS  PubMed  Google Scholar 

  3. Ni Z, Kim ED, Ha M, Lackey E, Liu J, Zhang Y, Sun Q, Chen ZJ (2009) Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature 457(7227):327–331. https://doi.org/10.1038/nature07523

    Article  CAS  PubMed  Google Scholar 

  4. Preuss SB, Meister R, Xu Q, Urwin CP, Tripodi FA, Screen SE, Anil VS, Zhu S, Morrell JA, Liu G, Ratcliffe OJ, Reuber TL, Khanna R, Goldman BS, Bell E, Ziegler TE, McClerren AL, Ruff TG, Petracek ME (2012) Expression of the Arabidopsis thaliana BBX32 gene in soybean increases grain yield. PLoS One 7(2):e30717. https://doi.org/10.1371/journal.pone.0030717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Muller NA, Wijnen CL, Srinivasan A, Ryngajllo M, Ofner I, Lin T, Ranjan A, West D, Maloof JN, Sinha NR, Huang S, Zamir D, Jimenez-Gomez JM (2016) Domestication selected for deceleration of the circadian clock in cultivated tomato. Nat Genet 48(1):89–93. https://doi.org/10.1038/ng.3447

    Article  CAS  PubMed  Google Scholar 

  6. Lu SJ, Zhao XH, Hu YL, Liu SL, Nan HY, Li XM, Fang C, Cao D, Shi XY, Kong LP, Su T, Zhang FG, Li SC, Wang Z, Yuan XH, Cober ER, Weller JL, Liu BH, Hou XL, Tian ZX, Kong FJ (2017) Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nat Genet 49(5):773–779. https://doi.org/10.1038/ng.3819

    Article  CAS  PubMed  Google Scholar 

  7. Greenham K, McClung CR (2015) Integrating circadian dynamics with physiological processes in plants. Nat Rev Genet 16(10):598–610. https://doi.org/10.1038/nrg3976

    Article  CAS  PubMed  Google Scholar 

  8. Wang W, Barnaby JY, Tada Y, Li H, Tor M, Caldelari D, Lee DU, Fu XD, Dong X (2011) Timing of plant immune responses by a central circadian regulator. Nature 470(7332):110–114. https://doi.org/10.1038/nature09766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Windram O, Madhou P, McHattie S, Hill C, Hickman R, Cooke E, Jenkins DJ, Penfold CA, Baxter L, Breeze E, Kiddle SJ, Rhodes J, Atwell S, Kliebenstein DJ, Kim YS, Stegle O, Borgwardt K, Zhang C, Tabrett A, Legaie R, Moore J, Finkenstadt B, Wild DL, Mead A, Rand D, Beynon J, Ott S, Buchanan-Wollaston V, Denby KJ (2012) Arabidopsis defense against Botrytis cinerea: chronology and regulation deciphered by high-resolution temporal transcriptomic analysis. Plant Cell 24(9):3530–3557. https://doi.org/10.1105/tpc.112.102046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang C, Xie QG, Anderson RG, Ng GN, Seitz NC, Peterson T, McClung CR, McDowell JM, Kong DD, Kwak JM, Lu H (2013) Crosstalk between the circadian clock and innate immunity in Arabidopsis. Plos Pathog 9(6):e1003370. https://doi.org/10.1371/journal.ppat.1003370. ARTN e1003370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bieniawska Z, Espinoza C, Schlereth A, Sulpice R, Hincha DK, Hannah MA (2008) Disruption of the Arabidopsis circadian clock is responsible for extensive variation in the cold-responsive transcriptome. Plant Physiol 147(1):263–279. https://doi.org/10.1104/pp.108.118059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pokhilko A, Mas P, Millar AJ (2013) Modelling the widespread effects of TOC1 signalling on the plant circadian clock and its outputs. BMC Syst Biol 7:23. https://doi.org/10.1186/1752-0509-7-23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gutierrez RA, Stokes TL, Thum K, Xu X, Obertello M, Katari MS, Tanurdzic M, Dean A, Nero DC, McClung CR, Coruzzi GM (2008) Systems approach identifies an organic nitrogen-responsive gene network that is regulated by the master clock control gene CCA1. Proc Natl Acad Sci U S A 105(12):4939–4944. https://doi.org/10.1073/pnas.0800211105

    Article  PubMed  PubMed Central  Google Scholar 

  14. Salome PA, Oliva M, Weigel D, Kramer U (2013) Circadian clock adjustment to plant iron status depends on chloroplast and phytochrome function. EMBO J 32(4):511–523. https://doi.org/10.1038/emboj.2012.330

    Article  CAS  PubMed  Google Scholar 

  15. Hong S, Kim SA, Guerinot ML, McClung CR (2013) Reciprocal interaction of the circadian clock with the iron homeostasis network in Arabidopsis. Plant Physiol 161(2):893–903. https://doi.org/10.1104/pp.112.208603

    Article  CAS  PubMed  Google Scholar 

  16. Chen YY, Wang Y, Shin LJ, Wu JF, Shanmugam V, Tsednee M, Lo JC, Chen CC, Wu SH, Yeh KC (2013) Iron is involved in the maintenance of circadian period length in Arabidopsis. Plant Physiol 161(3):1409–1420. https://doi.org/10.1104/pp.112.212068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Greenham K, Lou P, Remsen SE, Farid H, McClung CR (2015) TRiP: Tracking Rhythms in Plants, an automated leaf movement analysis program for circadian period estimation. Plant Methods 11:33. https://doi.org/10.1186/s13007-015-0075-5

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dowson-Day MJ, Millar AJ (1999) Circadian dysfunction causes aberrant hypocotyl elongation patterns in Arabidopsis. Plant J 17(1):63–71. https://doi.org/10.1046/j.1365-313X.1999.00353.x

    Article  CAS  PubMed  Google Scholar 

  19. Litthauer S, Battle MW, Lawson T, Jones MA (2015) Phototropins maintain robust circadian oscillation of PSII operating efficiency under blue light. Plant J 83(6):1034–1045. https://doi.org/10.1111/tpj.12947

    Article  CAS  PubMed  Google Scholar 

  20. Gould PD, Diaz P, Hogben C, Kusakina J, Salem R, Hartwell J, Hall A (2009) Delayed fluorescence as a universal tool for the measurement of circadian rhythms in higher plants. Plant J 58(5):893–901. https://doi.org/10.1111/j.1365-313X.2009.03819.x

    Article  CAS  PubMed  Google Scholar 

  21. Pan WJ, Wang X, Deng YR, Li JH, Chen W, Chiang JY, Yang JB, Zheng L (2015) Nondestructive and intuitive determination of circadian chlorophyll rhythms in soybean leaves using multispectral imaging. Sci Rep 5:11108. https://doi.org/10.1038/srep11108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mayer WE, Fischer C (1994) Protoplasts from Phaseolus-Coccineus L pulvinar motor cells show circadian volume oscillations. Chronobiol Int 11(3):156–164. https://doi.org/10.3109/07420529409057235

    Article  CAS  PubMed  Google Scholar 

  23. Jouve L, Greppin H, Agosti RD (1998) Arabidopsis thaliana floral stem elongation: evidence for an endogenous circadian rhythm. Plant Physiol Bioch 36(6):469–472. https://doi.org/10.1016/S0981-9428(98)80212-X

    Article  CAS  Google Scholar 

  24. Ueda HR, Chen W, Minami Y, Honma S, Honma K, Iino M, Hashimoto S (2004) Molecular-timetable methods for detection of body time and rhythm disorders from single-time-point genome-wide expression profiles. Proc Natl Acad Sci U S A 101(31):11227–11232. https://doi.org/10.1073/pnas.0401882101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li M, Cao L, Mwimba M, Zhou Y, Li L, Zhou M, Schnable PS, O’Rourke JA, Dong X, Wang W (2019) Comprehensive mapping of abiotic stress inputs into the soybean circadian clock. Proc Natl Acad Sci U S A 116(47):23840–23849. https://doi.org/10.1073/pnas.1708508116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kerwin RE, Jimenez-Gomez JM, Fulop D, Harmer SL, Maloof JN, Kliebenstein DJ (2011) Network quantitative trait loci mapping of circadian clock outputs identifies metabolic pathway-to-clock linkages in Arabidopsis. Plant Cell 23(2):471–485. https://doi.org/10.1105/tpc.110.082065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Higashi T, Tanigaki Y, Takayama K, Nagano AJ, Honjo MN, Fukuda H (2016) Detection of diurnal variation of tomato transcriptome through the molecular timetable method in a sunlight-type plant factory. Front Plant Sci 7:87. https://doi.org/10.3389/fpls.2016.00087

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tamang BG, Magliozzi JO, Maroof MA, Fukao T (2014) Physiological and transcriptomic characterization of submergence and reoxygenation responses in soybean seedlings. Plant Cell Environ 37(10):2350–2365. https://doi.org/10.1111/pce.12277

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the funds from State Key Laboratory for Protein and Plant Gene Research, Peking University, Center for Life Sciences and the National Natural Science Foundation of China (31970641) to W.W. and the funds from Beijing Nova Program of Science and Technology (Z191100001119027) and the National Natural Science Foundation of China (31970283) to M. Z.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mian Zhou or Wei Wang .

Editor information

Editors and Affiliations

1 Electronic Supplementary Materials

Data 1

List of soybean time-indicating genes. A reference sequence for RASL-seq used in this study. 40 nucleotides of 288 target genes are sequentially joined for the downstream bioinformatics analysis, including the read alignment and count (CSV 92 kb)

Data 2

Demo expression matrix of soybean transcriptome dataset (CSV 4558 kb)

Data 3

R Markdown demonstration of the molecular timetable and related statistical analysis (PDF 734 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, X., Xu, Y., Zhou, M., Wang, W. (2021). Assessing Global Circadian Rhythm Through Single-Time-Point Transcriptomic Analysis. In: MUKHTAR, S. (eds) Modeling Transcriptional Regulation. Methods in Molecular Biology, vol 2328. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1534-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1534-8_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1533-1

  • Online ISBN: 978-1-0716-1534-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics