Skip to main content

Recombinant Alphavirus-Mediated Expression of Ion Channels and Receptors in the Brain

  • Protocol
  • First Online:
Receptor and Ion Channel Detection in the Brain

Part of the book series: Neuromethods ((NM,volume 169))

  • 554 Accesses

Abstract

Ectopic gene transfer has been a crucial method for neurobiological studies aiming to resolve the function of specific membrane and non-membrane proteins. For this purpose, expression vectors based on Semliki Forest virus, Sindbis virus, and Venezuelan equine encephalitis virus, all members of the Alphavirus genus, have been engineered in the form of naked RNA replicons, recombinant viral particles, and layered DNA vectors. By applying these alphavirus vectors to mammalian cell lines, large quantities of integral membrane proteins including ligand- and voltage-gated ion channels as well as G protein-coupled receptors have been expressed, and their functional activity has been confirmed by both electrophysiological recordings and coupling to G proteins. Furthermore, alphavirus vectors have provided efficient delivery tools for high-level expression of recombinant proteins in cultures of primary neurons and organotypic hippocampal slices, as well as upon intracranial injection, in vivo in rodent brain. This chapter describes the generation of infectious but replication-deficient Semliki Forest virus and Sindbis virus particles that are useful for the efficient transduction of neurons in vitro, in situ, and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lundstrom K (2003) Present and future approaches to screening G protein-coupled receptors. Future Med Chem 5:523–538

    Article  CAS  Google Scholar 

  2. Waszkielewicz AM, Gunia A, Szkaradek N et al (2013) Ion channels as drug targets in central nervous system disorders. Curr Med Chem 20:1241–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lundstrom K (2005) Biology and application of alphaviruses in gene therapy. Gene Ther 12:S92–S97

    Article  CAS  PubMed  Google Scholar 

  4. Lundstrom K (2001) Semliki Forest virus vectors for rapid and high-level expression of integral membrane proteins. Biochim Biophys Acta 1601:90–96

    Google Scholar 

  5. de Hoop MJ, Olkkonen VM, Ikonen E et al (1994) Semliki Forest virus as a tool for protein expression in cultured rat hippocampal neurons. Gene Ther 1(Suppl.1):S28–S31

    PubMed  Google Scholar 

  6. Ehrengruber MU, Lundstrom K, Schweitzer C et al (1999) Recombinant Semliki Forest virus and Sindbis virus efficiently infect neurons in hippocampal slice cultures. Proc Natl Acad Sci U S A 96:7041–7046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Strauss JH, Strauss EG (1994) The alphaviruses: gene expression, replication, and evolution. Microbiol Rev 58:491–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liljeström P, Garoff H (1991) A new generation of animal cell expression vectors based on the Semliki Forest virus replicon. Biotechnology 9:1356–1361

    Article  PubMed  Google Scholar 

  9. Bredenbeek PJ, Frolov I, Rice CM et al (1993) Sindbis virus expression vectors: packaging of RNA replicons by using defective helper RNAs. J Virol 67:6439–6446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Davis NL, Brown KW, Johnston RE (1989) In vitro synthesis of infectious Venezuelan equine encephalitis virus RNA from a cDNA clone: analysis of a viable deletion mutant. Virology 171:189–204

    Article  CAS  PubMed  Google Scholar 

  11. Berglund P, Sjöberg M, Garoff H et al (1993) Semliki Forest virus expression system: production of conditionally infectious recombinant particles. Bio/Technology 11:916–920

    CAS  Google Scholar 

  12. Smerdou C, Liljestrom P (1999) Two-helper RNA system for production of recombinant Semliki Forest virus particles. J Virol 73:1092–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schlesinger S (2001) Alphavirus vectors: development and potential therapeutic applications. Exp Opin Biol Ther 1:177–191

    Article  CAS  Google Scholar 

  14. Ehrengruber MU, Renggli M, Raineteau O et al (2003) Semliki Forest virus A7(74) transduces hippocampal neurons and glial cells in a temperature-dependent dual manner. J Neurovirol 9:16–28

    Article  CAS  PubMed  Google Scholar 

  15. DiCiommo DP, Bremner R (1998) Rapid, high level protein production using DNA-based Semliki Forest virus vectors. J Biol Chem 273:18060–18066

    Article  CAS  PubMed  Google Scholar 

  16. Lundstrom K, Rotmann D, Hermann D et al (2001) Novel mutant Semliki Forest virus vectors: gene expression and localization studies in neuronal cells. Histochem Cell Biol 115:83–91

    Article  CAS  PubMed  Google Scholar 

  17. Ehrengruber MU, Hennou S, Büeler H et al (2001) Gene transfer into neurons from hippocampal slices: comparison of recombinant Semliki Forest virus, adenovirus, adeno-associated virus, lentivirus, and measles virus. Mol Cell Neurosci 17:855–871

    Article  CAS  PubMed  Google Scholar 

  18. Ehrengruber MU, Goldin AL (2007) Semliki Forest virus vectors with mutations in the nonstructural protein 2 gene permit extended super-infection in neuronal and non-neuronal cells. J Neurovirol 13:353–363

    Article  CAS  PubMed  Google Scholar 

  19. Lundstrom K, Abenavoli A, Malgaroli A et al (2003) Novel Semliki Forest virus vectors with reduced toxicity and temperature-sensitivity for long-term enhancement of transgene expression. Mol Ther 7:202–209

    Article  CAS  PubMed  Google Scholar 

  20. Hassaine G, Wagner R, Kempf J et al (2006) Semliki Forest virus vectors for overexpression of 101 G protein-coupled receptors in mammalian host cells. Prot Expr Purif 45:343–351

    Article  CAS  Google Scholar 

  21. Lundstrom K, Wagner R, Reinhart C et al (2006) Structural genomics on membrane proteins: comparison of more than 100 GPCRs in 3 expression systems. J Struct Funct Genom 7:77–91

    Article  CAS  Google Scholar 

  22. Blasey HD, Lundstrom K, Tate S et al (1997) Development of a process for recombinant protein production at one litre scale with the Semliki Forest virus system. Cytotechnology 24:65–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Werner P, Kawashima E, Reid J et al (1994) Organization of the mouse 5-HT3 receptor gene and functional expression of two splice variants. Mol Brain Res 26:233–241

    Article  CAS  PubMed  Google Scholar 

  24. Hovius R, Tairi A-P, Blasey H et al (1998) Characterization of a mouse serotonin 5-HT3 receptor purified from mammalian cells. J Neurochem 70:824–834

    Article  CAS  PubMed  Google Scholar 

  25. Evans RJ, Lewis C, Virginio C et al (1996) Ionic permeability of, and divalent cation effects on, two ATP-gated cation channels (P2X receptors) expressed in mammalian cells. J Physiol 497(2):413–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Michel AD, Miller KJ, Lundstrom K et al (1997) Radiolabeling of the rat P2X4 purinoreceptor: evidence for allosteric interactions of purinoreceptor antagonists and monovalent cations with P2X purinoreceptors. Mol Pharmacol 51:524–532

    CAS  PubMed  Google Scholar 

  27. Ehrengruber MU, Lee A, Dutt K et al (2007) High efficiency expression of large voltage-gated ion channels in neurons. Soc. Neurosci; abstract no. 466.5. San Diego, CA, 3–7 Nov 2007

    Google Scholar 

  28. Lundstrom K, Richards JG, Pink JR et al (1999) Efficient in vivo expression of a reporter gene in rat brain after injection of recombinant replication-deficient Semliki Forest virus. Gene Ther Mol Biol 3:15–23

    Google Scholar 

  29. Altman-Hamandzic S, Groceclose C, Ma J-X et al (1997) Expression of β-galactosidase in mouse brain: utilization of a novel nonreplicative Sindbis virus vector as a neuronal gene delivery system. Gene Ther 4:815–822

    Article  CAS  Google Scholar 

  30. Marie H, Morishita W, Yu X et al (2005) Generation of silent synapses by acute in vivo expression of CaMKIV and CREB. Neuron 45:741–752

    Article  CAS  PubMed  Google Scholar 

  31. Frolov I, Schlesinger S (1996) Translation of Sindbis virus mRNA: analysis of sequences downstream of the initiating AUG codon that enhance translation. J Virol 70:1182–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim J, Dittgen T, Nimmerjahn A et al (2004) Sindbis vector SINrep (nsP2S726): a tool for rapid heterologous expression with attenuated cytotoxicity in neurons. J Neurosci Methods 133:81–90

    Article  CAS  PubMed  Google Scholar 

  33. Puglia AL, Rezende AG, Jorge SA et al (2013) Quantitative RT-PCR for titration of replication-defective recombinant Semliki Forest virus. J. Virol Methods 193:647–652

    Article  CAS  Google Scholar 

  34. Malgaroli A, Ting AE, Wendland B et al (1995) Presynaptic component of long-term potentiation visualized at individual hippocampal synapses. Science 268:1624–1628

    Article  CAS  PubMed  Google Scholar 

  35. Gähwiler BH (1981) Organotypic monolayer cultures of nervous tissue. J Neurosci Methods 4:329–342

    Article  PubMed  Google Scholar 

  36. Ehrengruber MU, Schlesinger S, Lundstrom K (2011) Alphaviruses: Semliki Forest virus and Sindbis virus vectors for gene transfer into neurons. In: Crawley JN, Gerfen CR, Rogawski MA, Sibley DR, Skolnick P, Wray S (eds) Current protocols in neuroscience. John Wiley & Sons, New York, pp 4.22.1–4.22.27

    Google Scholar 

  37. Paxinos G, Watson C (1997) Rat brain in stereotaxic coordinates. Academic Press, London

    Google Scholar 

  38. Scheer A, Björklöf K, Cotecchia S et al (1999) Expression of the α1B adrenergic receptor and G protein subunits in mammalian cell lines using the Semliki Forest virus expression system. J Receptor Signal Transd Res 19:369–378

    Article  CAS  Google Scholar 

  39. Lundstrom K, Turpin MP (1996) Proposed schizophrenia-related gene polymorphism: expression of the Ser9Gly mutant human dopamine D3 receptor with the Semliki Forest virus system. Biochem Biophys Res Commun 225:1068–1072

    Article  CAS  PubMed  Google Scholar 

  40. Hoffmann M, Verzijl D, Lundstrom K et al (2001) Recombinant Semliki Forest virus over-expression and pharmacological characterization of the histamine H2 receptor in mammalian cells. Eur J Pharmacol 427:105–114

    Article  CAS  PubMed  Google Scholar 

  41. Schweitzer C, Kratzeisen C, Adam G et al (2000) Characterization of [3H]-LY354740 binding to rat mGlu2 and mGlu3 receptors expressed in CHO cells using Semliki Forest virus vectors. Neuropharmacology 39:1700–1706

    Article  CAS  PubMed  Google Scholar 

  42. Monastryrskaia K, Lundstrom K, Plahl D et al (1999) Effect of the umami peptides on the ligand binding and function of rat mGlu4a receptor might implicate this receptor in the monosodium glutamate taste transduction. Br J Pharmacol 128:1027–1034

    Article  Google Scholar 

  43. Lundstrom K, Mills A, Buell G et al (1994) High-level expression of the human neurokinin-1 receptor in mammalian cells using the Semliki Forest virus expression system. Eur J Biochem 224:917–921

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Sondra Schlesinger for her comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus U. Ehrengruber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ehrengruber, M.U., Lundstrom, K. (2021). Recombinant Alphavirus-Mediated Expression of Ion Channels and Receptors in the Brain. In: Lujan, R., Ciruela, F. (eds) Receptor and Ion Channel Detection in the Brain. Neuromethods, vol 169. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1522-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1522-5_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1521-8

  • Online ISBN: 978-1-0716-1522-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics