Skip to main content

Localization of GFP-Tagged Proteins Under the Electron Microscope

  • Protocol
  • First Online:
Receptor and Ion Channel Detection in the Brain

Abstract

The cloning of green fluorescent protein (GFP) has opened a new arena of protein labeling, and has become a new alternative to existing markers or dyes. Main advantages are its stability and its fluorescent activity independent on the binding of other ligands or proteins. The use of GFP-tagged proteins has found multiple applications in molecular biology such as lineage tracing assays, cell fusion assessment, and/or immunodetection among others. High-resolution imaging combined with immunogold labeling for GFP provides the best correlation with subcellular localization, and it allows detection of membrane-bound GFP-tagged receptors and cytosolic and/or nuclear proteins. In this chapter, we attempt to summarize the state of the art in GFP detection, current protocols, advantages, and pitfalls, and we describe a method, used in our laboratory, which combines confocal fluorescence microscopy with transmission electron microscopy (TEM) for the study of cell cultures at the ultrastructural level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shimomura O, Johnson FH, Saiga Y et al (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59(3):223–239

    Article  CAS  Google Scholar 

  2. Chalfie M, Tu Y, Euskirchen G et al (1994) Green fluorescent protein as a marker for gene expression. Science 263(5148):802–805

    Article  CAS  Google Scholar 

  3. Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, Fike JR, Lee HO, Pfeffer K, Lois C, Morrison SJ, Alvarez-Buylla A (2003) Nature 425(6961):968–973. Epub 2003 Oct 12

    Article  CAS  Google Scholar 

  4. Mazo M, Gavira JJ, Abizanda G et al (2010) Transplantation of mesenchymal stem cells exerts a greater long-term effect than bone marrow mononuclear cells in a chronic myocardial infarction model in rat. Cell Transplant 19(3):313–328. https://doi.org/10.3727/096368909X480323

    Article  PubMed  Google Scholar 

  5. Thauvin-Robinet C, Lee JS, Lopez E et al (2014) The oral-facial-digital syndrome gene C2CD3 encodes a positive regulator of centriole elongation. Nat Genet 46:905–911. https://doi.org/10.1038/ng.3031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sirerol-Piquer MS, Cebrián-Silla A, Alfaro-Cervelló C et al (2012) GFP immunogold staining, from light to electron microscopy, in mammalian cells. Micron 43(5):589–599. https://doi.org/10.1016/j.micron.2011.10.008

    Article  CAS  PubMed  Google Scholar 

  7. Hayat. Principles and techniques of electron microscopy. Volume 1 and 2. Van Nostrand Reinhold Company 1972

    Google Scholar 

  8. Hainfeld JF, Robinson JM (2000) New frontiers in gold labeling: symposium overview. J Histochem Cytochem 48(4):459–460

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank M. Salomé Sirerol-Piquer, Clara Alfaro-Cervelló, Ulises Gómez-Pinedo, and Mario Soriano-Navarro for their useful contribution. We thank Maria Duran-Moreno for sharing her GFP picture. This work was supported by Spanish MINECO grants (Instituto Salud Carlos III-RETIC TerCel and SAF2012-33683, to JMGV) and pre- and postdoctoral fellowships (AP2010-4264 and CM12/00014 to ACS and SGP, respectively), and the University of Valencia predoctoral fellowship (to PGB), and Generalitat Valenciana predoctoral fellowship Santiago Grisolia (to MF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sara Gil-Perotin or José Manuel García-Verdugo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gil-Perotin, S. et al. (2021). Localization of GFP-Tagged Proteins Under the Electron Microscope. In: Lujan, R., Ciruela, F. (eds) Receptor and Ion Channel Detection in the Brain. Neuromethods, vol 169. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1522-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1522-5_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1521-8

  • Online ISBN: 978-1-0716-1522-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics