Skip to main content

Flow Cytofluorometric Analysis of Molecular Mechanisms of Premature Red Blood Cell Death

  • Protocol
  • First Online:
Environmental Toxicology and Toxicogenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2326))

Abstract

This chapter describes, in detail, the operational principles and experimental design to analyze the premature death of human red blood cells (RBCs; erythrocytes). Necrosis (i.e., hemolysis), eryptosis, and necroptosis are the three types of cell death thus far known to exist in RBCs, and distinctive markers of each are well established. Here, methods based on flow cytometry are presented in an easily reproducible form. Moreover, manipulation of incubation medium to promote or inhibit certain physiological phenomena, along with a step-by-step approach to examine membrane scrambling, cell volume, surface complexity, calcium activity, oxidative stress, and signal transduction pathways are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCaig WD, Hodges AL, Deragon MA, Haluska RJ Jr, Bandyopadhyay S, Ratner AJ, Spitalnik SL, Hod EA, LaRocca TJ (2019) Storage primes erythrocytes for necroptosis and clearance. Cell Physiol Biochem 53:496–507. https://doi.org/10.33594/000000153

    Article  CAS  PubMed  Google Scholar 

  2. Qadri SM, Bissinger R, Solh Z, Oldenborg PA (2017) Eryptosis in health and disease: a paradigm shift towards understanding the (patho)physiological implications of programmed cell death of erythrocytes. Blood Rev 31:349–361. https://doi.org/10.1016/j.blre.2017.06.001

    Article  CAS  PubMed  Google Scholar 

  3. LaRocca TJ, Stivison EA, Hod EA, Spitalnik SL, Cowan PJ, Randis TM, Ratner AJ (2014) Human-specific bacterial pore-forming toxins induce programmed necrosis in erythrocytes. mBio 5:e01251–e01214. https://doi.org/10.1128/mBio.01251-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Foller M, Lang F (2020) Ion transport in eryptosis, the suicidal death of erythrocytes. Front Cell Dev Biol 8:597. https://doi.org/10.3389/fcell.2020.00597

    Article  PubMed  PubMed Central  Google Scholar 

  5. Alfhili MA, Weidner DA, Lee MH (2019) Disruption of erythrocyte membrane asymmetry by triclosan is preceded by calcium dysregulation and p38 MAPK and RIP1 stimulation. Chemosphere 229:103–111. https://doi.org/10.1016/j.chemosphere.2019.04.211

    Article  CAS  PubMed  Google Scholar 

  6. Macczak A, Cyrkler M, Bukowska B, Michalowicz J (2016) Eryptosis-inducing activity of bisphenol a and its analogs in human red blood cells (in vitro study). J Hazard Mater 307:328–335. https://doi.org/10.1016/j.jhazmat.2015.12.057

    Article  CAS  PubMed  Google Scholar 

  7. Jarosiewicz M, Michalowicz J, Bukowska B (2019) In vitro assessment of eryptotic potential of tetrabromobisphenol A and other bromophenolic flame retardants. Chemosphere 215:404–412. https://doi.org/10.1016/j.chemosphere.2018.09.161

    Article  CAS  PubMed  Google Scholar 

  8. Lang E, Pozdeev VI, Xu HC, Shinde PV, Behnke K, Hamdam JM, Lehnert E, Scharf RE, Lang F, Haussinger D, Lang KS, Lang PA (2016) Storage of erythrocytes induces suicidal erythrocyte death. Cell Physiol Biochem 39:668–676. https://doi.org/10.1159/000445657

    Article  CAS  PubMed  Google Scholar 

  9. Jemaa M, Fezai M, Bissinger R, Lang F (2017) Methods employed in Cytofluorometric assessment of Eryptosis, the suicidal erythrocyte death. Cell Physiol Biochem 43:431–444. https://doi.org/10.1159/000480469

    Article  CAS  PubMed  Google Scholar 

  10. Ghashghaeinia M, Cluitmans JC, Akel A, Dreischer P, Toulany M, Koberle M, Skabytska Y, Saki M, Biedermann T, Duszenko M, Lang F, Wieder T, Bosman GJ (2012) The impact of erythrocyte age on eryptosis. Br J Haematol 157:606–614. https://doi.org/10.1111/j.1365-2141.2012.09100.x

    Article  CAS  PubMed  Google Scholar 

  11. Chakrabarty G, NaveenKumar SK, Kumar S, Mugesh G (2020) Modulation of redox signaling and thiol homeostasis in red blood cells by Peroxiredoxin mimetics. ACS Chem Biol 15:2673–2682. https://doi.org/10.1021/acschembio.0c00309

    Article  CAS  PubMed  Google Scholar 

  12. Ghashghaeinia M, Koralkova P, Giustarini D, Mojzikova R, Fehrenbacher B, Dreischer P, Schaller M, Mrowietz U, Martinez-Ruiz A, Wieder T, Divoky V, Rossi R, Lang F, Koberle M (2020) The specific PKC-alpha inhibitor chelerythrine blunts costunolide-induced eryptosis. Apoptosis 25:674–685. https://doi.org/10.1007/s10495-020-01620-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Foller M, Mahmud H, Gu S, Wang K, Floride E, Kucherenko Y, Luik S, Laufer S, Lang F (2009) Participation of leukotriene C(4) in the regulation of suicidal erythrocyte death. J Physiol Pharmacol 60:135–143

    CAS  PubMed  Google Scholar 

  14. Briglia M, Fazio A, Faggio C, Laufer S, Alzoubi K, Lang F (2015) Triggering of suicidal erythrocyte death by Ruxolitinib. Cell Physiol Biochem 37:768–778. https://doi.org/10.1159/000430394

    Article  CAS  PubMed  Google Scholar 

  15. Mischitelli M, Jemaa M, Almasry M, Faggio C, Lang F (2016) Stimulation of erythrocyte cell membrane scrambling by quinine. Cell Physiol Biochem 40:657–667. https://doi.org/10.1159/000452578

    Article  CAS  PubMed  Google Scholar 

  16. Bhavsar SK, Gu S, Bobbala D, Lang F (2011) Janus kinase 3 is expressed in erythrocytes, phosphorylated upon energy depletion and involved in the regulation of suicidal erythrocyte death. Cell Physiol Biochem 27:547–556. https://doi.org/10.1159/000329956

    Article  CAS  PubMed  Google Scholar 

  17. Park HH, Park SY, Mah S, Park JH, Hong SS, Hong S, Kim YS (2018) HS-1371, a novel kinase inhibitor of RIP3-mediated necroptosis. Exp Mol Med 50:125. https://doi.org/10.1038/s12276-018-0152-8

    Article  CAS  PubMed Central  Google Scholar 

  18. Alzoubi K, Egler J, Abed M, Lang F (2015) Enhanced eryptosis following auranofin exposure. Cell Physiol Biochem 37:1018–1028. https://doi.org/10.1159/000430228

    Article  CAS  PubMed  Google Scholar 

  19. Bentzen PJ, Lang F (2007) Effect of anandamide on erythrocyte survival. Cell Physiol Biochem 20:1033–1042. https://doi.org/10.1159/000110714

    Article  CAS  PubMed  Google Scholar 

  20. Ranzato E, Martinotti S, Magnelli V, Murer B, Biffo S, Mutti L, Burlando B (2012) Epigallocatechin-3-gallate induces mesothelioma cell death via H2 O2 -dependent T-type Ca2+ channel opening. J Cell Mol Med 16:2667–2678. https://doi.org/10.1111/j.1582-4934.2012.01584.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stocker JW, De Franceschi L, McNaughton-Smith GA, Corrocher R, Beuzard Y, Brugnara C (2003) ICA-17043, a novel Gardos channel blocker, prevents sickled red blood cell dehydration in vitro and in vivo in SAD mice. Blood 101:2412–2418. https://doi.org/10.1182/blood-2002-05-1433

    Article  CAS  PubMed  Google Scholar 

  22. Lang KS, Myssina S, Tanneur V, Wieder T, Huber SM, Lang F, Duranton C (2003) Inhibition of erythrocyte cation channels and apoptosis by ethylisopropylamiloride. Naunyn Schmiedeberg’s Arch Pharmacol 367:391–396. https://doi.org/10.1007/s00210-003-0701-z

    Article  CAS  Google Scholar 

  23. Liu J, Bhuyan AAM, Ma K, Zhang S, Cheng A, Lang F (2020) Inhibition of suicidal erythrocyte death by pyrogallol. Mol Biol Rep 47:5025–5032. https://doi.org/10.1007/s11033-020-05568-3

    Article  CAS  PubMed  Google Scholar 

  24. Jemaa M, Mischitelli M, Fezai M, Almasry M, Faggio C, Lang F (2016) Stimulation of suicidal erythrocyte death by the CDC25 inhibitor NSC-95397. Cell Physiol Biochem 40:597–607. https://doi.org/10.1159/000452573

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Deanship of Scientific Research, King Saud University for funding this research project through Vice Deanship of Scientific Research Chairs (DSRVCH).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad A. Alfhili or Myon Hee Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Alfhili, M.A., Lee, M.H. (2021). Flow Cytofluorometric Analysis of Molecular Mechanisms of Premature Red Blood Cell Death. In: Pan, X., Zhang, B. (eds) Environmental Toxicology and Toxicogenomics. Methods in Molecular Biology, vol 2326. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1514-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1514-0_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1513-3

  • Online ISBN: 978-1-0716-1514-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics