Skip to main content

Differentiation of Midbrain Dopaminergic Neurons from Human iPS Cells

  • Protocol
  • First Online:
Experimental Models of Parkinson’s Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2322))

Abstract

Human-induced pluripotent stem (iPS) cells provide a powerful means for analyzing disease mechanisms and drug screening, especially for neurological diseases, considering the difficulty to obtain live pathological tissue. The midbrain dopaminergic neurons of the substantia nigra are mainly affected in Parkinson’s disease, but it is impossible to obtain and analyze viable dopaminergic neurons from live patients. This problem can be overcome by the induction of dopaminergic neurons from human iPS cells. Here, we describe an efficient method for differentiating human iPS cells into midbrain dopaminergic neurons. This protocol holds merit for obtaining a deeper understanding of the disease and for developing novel treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676. https://doi.org/10.1016/j.cell.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  2. Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872. https://doi.org/10.1016/J.CELL.2007.11.019

    Article  CAS  PubMed  Google Scholar 

  3. Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920. https://doi.org/10.1126/science.1151526

    Article  CAS  PubMed  Google Scholar 

  4. Shi Y, Inoue H, Wu JC, Yamanaka S (2017) Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov 16:115–130

    Article  CAS  PubMed  Google Scholar 

  5. Okita K, Yamakawa T, Matsumura Y et al (2013) An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells 31:458–466. https://doi.org/10.1002/stem.1293

    Article  CAS  PubMed  Google Scholar 

  6. Matsumoto T, Fujimori K, Andoh-Noda T et al (2016) Functional neurons generated from T cell-derived induced pluripotent stem cells for neurological disease modeling. Stem Cell Reports 6:422–435. https://doi.org/10.1016/j.stemcr.2016.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Park IH, Arora N, Huo H et al (2008) Disease-specific induced pluripotent stem cells. Cell 134:877–886. https://doi.org/10.1016/j.cell.2008.07.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nguyen HN, Byers B, Cord B et al (2011) LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell 8:267–280. https://doi.org/10.1016/j.stem.2011.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Seibler P, Graziotto J, Jeong H et al (2011) Mitochondrial Parkin recruitment is impaired in neurons derived from mutant PINK1 iPS cells. J Neurosci 31:5970–5976. https://doi.org/10.1523/JNEUROSCI.4441-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Byers B, Cord B, Nguyen HN et al (2011) SNCA triplication Parkinson’s patient’s iPSC-derived DA neurons accumulate α-Synuclein and are susceptible to oxidative stress. PLoS One 6(11):e26159. https://doi.org/10.1371/journal.pone.0026159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Imaizumi Y, Okada Y, Akamatsu W et al (2012) Mitochondrial dysfunction associated with increased oxidative stress and α-synuclein accumulation in PARK2 iPSC-derived neurons and postmortem brain tissue. Mol Brain 5:35. https://doi.org/10.1186/1756-6606-5-35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ishikawa K-I, Yamaguchi A, Okano H, Akamatsu W (2018) Assessment of mitophagy in iPS cell-derived neurons. Methods Mol Biol 1759:59–67. https://doi.org/10.1007/7651_2017_10

    Article  CAS  PubMed  Google Scholar 

  13. Chambers SM, Fasano CA, Papapetrou EP et al (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27:275–280. https://doi.org/10.1038/nbt.1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fujimori K, Matsumoto T, Kisa F et al (2017) Escape from pluripotency via inhibition of TGF-β/BMP and activation of Wnt signaling accelerates differentiation and aging in hPSC progeny cells. Stem Cell Reports 9:1675–1691. https://doi.org/10.1016/j.stemcr.2017.09.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fasano CA, Chambers SM, Lee G et al (2010) Efficient derivation of functional floor plate tissue from human embryonic stem cells. Cell Stem Cell 6:336–347. https://doi.org/10.1016/j.stem.2010.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kriks S, Shim J-W, Piao J et al (2011) Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480:547–551. https://doi.org/10.1038/nature10648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Doi D, Samata B, Katsukawa M et al (2014) Isolation of human induced pluripotent stem cell-derived dopaminergic progenitors by cell sorting for successful transplantation. Stem Cell Reports 2:337–350. https://doi.org/10.1016/J.STEMCR.2014.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Imaizumi K, Sone T, Ibata K et al (2015) Controlling the regional identity of hPSC-derived neurons to uncover neuronal subtype specificity of neurological disease phenotypes. Stem Cell Reports 5:1010–1022. https://doi.org/10.1016/j.stemcr.2015.10.005

    Article  PubMed  PubMed Central  Google Scholar 

  19. Suzuki S, Akamatsu W, Kisa F et al (2017) Efficient induction of dopaminergic neuron differentiation from induced pluripotent stem cells reveals impaired mitophagy in PARK2 neurons. Biochem Biophys Res Commun 483:88–93. https://doi.org/10.1016/j.bbrc.2016.12.188

    Article  CAS  PubMed  Google Scholar 

  20. Valentine MNZ, Hashimoto K, Fukuhara T et al (2019) Multi-year whole-blood transcriptome data for the study of onset and progression of Parkinson’s disease. Sci Data 6:20. https://doi.org/10.1038/s41597-019-0022-9

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ikeda A, Nishioka K, Meng H et al (2019) Mutations in CHCHD2 cause α-synuclein aggregation. Hum Mol Genet 28:3895–3911. https://doi.org/10.1093/hmg/ddz241

    Article  CAS  PubMed  Google Scholar 

  22. Oji Y, Hatano T, Ueno S-I et al (2020) Variants in saposin D domain of prosaposin gene linked to Parkinson’s disease. Brain 143:1190–1205. https://doi.org/10.1093/brain/awaa064

    Article  PubMed  Google Scholar 

  23. Shiba-Fukushima K, Ishikawa K-I, Inoshita T et al (2017) Evidence that phosphorylated ubiquitin signaling is involved in the etiology of Parkinson’s disease. Hum Mol Genet 26:3172–3185. https://doi.org/10.1093/hmg/ddx201

    Article  CAS  PubMed  Google Scholar 

  24. Ren Q, Ma M, Yang J et al (2018) Soluble epoxide hydrolase plays a key role in the pathogenesis of Parkinson’s disease. Proc Natl Acad Sci U S A 115:E5815–E5823. https://doi.org/10.1073/pnas.1802179115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hirano K, Fujimaki M, Sasazawa Y et al (2019) Neuroprotective effects of memantine via enhancement of autophagy. Biochem Biophys Res Commun 518:161–170. https://doi.org/10.1016/j.bbrc.2019.08.025

    Article  CAS  PubMed  Google Scholar 

  26. Kataura T, Saiki S, Ishikawa K-I et al (2020) BRUP-1, an intracellular bilirubin modulator, exerts neuroprotective activity in a cellular Parkinson’s disease model. J Neurochem 155(1):81–97. https://doi.org/10.1111/jnc.14997

    Article  CAS  PubMed  Google Scholar 

  27. Shiba-Fukushima K, Inoshita T, Sano O et al (2020) A cell-based high-throughput screening identified two compounds that enhance PINK1-Parkin signaling. iScience 23:101048. https://doi.org/10.1016/j.isci.2020.101048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yamaguchi A, Ishikawa K-I, Inoshita T et al (2020) Identifying therapeutic agents for amelioration of mitochondrial clearance disorder in neurons of familial Parkinson disease. Stem Cell Reports 14:1060–1075. https://doi.org/10.1016/j.stemcr.2020.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ohnuki M, Takahashi K, Yamanaka S (2009) Generation and characterization of human induced pluripotent stem cells. Curr Protoc Stem Cell Biol 9:4A.2.1–4A.2.25. https://doi.org/10.1002/9780470151808.sc04a02s9

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants-in-Aid for Scientific Research (20K07873 to K.I., 20K07741 to R.N.) from the Japan Society for the Promotion of Science (JSPS), MEXT-Supported Programs for the Strategic Research Foundation at Private Universities (S1411007), Fostering Physicians in Basic Research for Coping with Advancing Sophistication of Medicine and Medical Care, and the Rare/Intractable Disease Project of Japan (JP17ek0109244 to K.I. and W.A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kei-Ichi Ishikawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ishikawa, KI., Nonaka, R., Akamatsu, W. (2021). Differentiation of Midbrain Dopaminergic Neurons from Human iPS Cells. In: Imai, Y. (eds) Experimental Models of Parkinson’s Disease. Methods in Molecular Biology, vol 2322. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1495-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1495-2_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1494-5

  • Online ISBN: 978-1-0716-1495-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics