Skip to main content

Sepsis Biomarkers

  • Protocol
  • First Online:
Sepsis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2321))

Abstract

Biomarkers have been used in sepsis to assist with the diagnosis of disease as well as determining the severity of disease, that is, prognosis. These biomarkers are based on the presence of discrete molecules within the blood. Unfortunately, in 2020, a single biomarker does not have sufficient sensitivity and specificity to definitively rule in or rule out sepsis. Biomarkers have shown better performance in animal models of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levy MM, Rhodes A, Phillips GS et al (2014) Surviving Sepsis Campaign: association between performance metrics and outcomes in a 7.5-year study. Crit Care Med 40:1623–1633

    Google Scholar 

  2. Fleischmann C, Scherag A, Adhikari NK et al (2016) Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit Care Med 193:259–272

    Article  CAS  PubMed  Google Scholar 

  3. Stevenson EK, Rubenstein AR, Radin GT et al (2014) Two decades of mortality trends among patients with severe sepsis: a comparative meta-analysis. Crit Care Med 42:625

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rhee C, Dantes R, Epstein L et al (2017) Incidence and trends of sepsis in US hospitals using clinical vs. claims data, 2009-2014. JAMA 318:1241–1249

    Article  PubMed  PubMed Central  Google Scholar 

  5. Medicine PIJNEJo \ (2014) A randomized trial of protocol-based care for early septic shock N Engl J Med 370:1683–1693

    Article  CAS  Google Scholar 

  6. Physicians ACoC,Med SoCCMCCCJCC (1992) American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 20:864–874

    Article  Google Scholar 

  7. Stortz JA, Murphy TJ, Raymond SL et al (2018) Evidence for persistent immune suppression in patients who develop chronic critical illness after sepsis. Shock 49:249–258

    Article  PubMed  PubMed Central  Google Scholar 

  8. Singer M, Deutschman CS, Seymour CW et al (2016) The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315:801–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. van Engelen TS, Wiersinga WJ, Scicluna BP et al (2018) Biomarkers in sepsis. Critical Care Clinics 34:139–152

    Google Scholar 

  10. Prucha M, Bellingan G, Zazula R (2015) Sepsis biomarkers. Clin Chim Acta 440:97–103

    Article  CAS  PubMed  Google Scholar 

  11. Pierrakos C, Vincent J-L (2010) Sepsis biomarkers: a review. Crit Care 14:R15

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sibbing D, Koch W, Massberg S et al (2011) No association of paraoxonase-1 Q192R genotypes with platelet response to clopidogrel and risk of stent thrombosis after coronary stenting. Eur Heart J 32:1605–1613

    Article  CAS  PubMed  Google Scholar 

  13. Hirano T (1991) Interleukin 6 (IL-6) and its receptor: their role in plasma cell neoplasias. Int J Cell Cloning 9:166–184

    Article  CAS  PubMed  Google Scholar 

  14. Sims JE, Smith DE (2010) The IL-1 family: regulators of immunity. Nat Rev Immunol 10:89

    Article  CAS  PubMed  Google Scholar 

  15. Bloos F, Reinhart K (2014) Rapid diagnosis of sepsis. Virulence 5:154–160

    Article  PubMed  Google Scholar 

  16. Reinhart K, Menges T, Gardlund B et al (2001) Randomized, placebo-controlled trial of the anti-tumor necrosis factor antibody fragment afelimomab in hyperinflammatory response during severe sepsis: The RAMSES Study. Crit Care Med 29:765–769

    Article  CAS  PubMed  Google Scholar 

  17. Shehabi Y, Seppelt IJCC (2008) Pro/Con debate: is procalcitonin useful for guiding antibiotic decision making in critically ill patients? Crit Care 12:211

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lobo SM, Lobo FR, Bota DP et al (2003) C-reactive protein levels correlate with mortality and organ failure in critically Ill patientsa. Chest 123:2043–2049

    Article  CAS  PubMed  Google Scholar 

  19. Yamamoto S, Yamazaki S, Shimizu T et al (2015) Prognostic utility of serum CRP levels in combination with CURB-65 in patients with clinically suspected sepsis: a decision curve analysis. PLoS One 5:e007049

    Google Scholar 

  20. Reinhart K, Karzai W, Meisner MJ (2000) Procalcitonin as a marker of the systemic inflammatory response to infection. Intensive Care Med 26:1193–1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dahaba A, Metzler HJ (2009) Procalcitonin’s role in the sepsis cascade. Is procalcitonin a sepsis marker or mediator? Minerva Anestesiol 75:447–452

    CAS  PubMed  Google Scholar 

  22. Song M, Kellum JA (2005) Interleukin-6. Crit Care Med 33:S463–S465

    Article  PubMed  Google Scholar 

  23. Feng M, Sun T, Zhao Y et al (2016) Detection of serum Interleukin-6/10/18 levels in sepsis and its clinical significance. J Clin Lab Anal 30:1037–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mera S, Tatulescu D, Cismaru C et al (2011) Multiplex cytokine profiling in patients with sepsis. APMIS 119:155–163

    Article  CAS  PubMed  Google Scholar 

  25. Jekarl DW, Lee S-Y, Lee J et al (2013) Procalcitonin as a diagnostic marker and IL-6 as a prognostic marker for sepsis. Diagn Microbiol Infect Dis 75:342–347

    Article  CAS  PubMed  Google Scholar 

  26. Ma L, Zhang H, Y-l Y et al (2016) Role of interleukin-6 to differentiate sepsis from non-infectious systemic inflammatory response syndrome. Cytokine 88:126–135

    Article  CAS  PubMed  Google Scholar 

  27. Liu Y, Hou J-H, Li Q et al (2016) Biomarkers for diagnosis of sepsis in patients with systemic inflammatory response syndrome: a systematic review and meta-analysis. Springerplus 5:2091

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Hou T, Huang D, Zeng R et al (2015) Accuracy of serum interleukin (IL)-6 in sepsis diagnosis: a systematic review and meta-analysis. Int J Clin Exp Med 8:15238

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Iwase S, Nakada T-A, Hattori N et al (2018) Interleukin-6 as a diagnostic marker for infection in critically ill patients: A systematic review and meta-analysis. Am J Emerg Med 37(2):260–265

    Article  PubMed  Google Scholar 

  30. Ljungström L, Pernestig A-K, Jacobsson G et al (2017) Diagnostic accuracy of procalcitonin, neutrophil-lymphocyte count ratio, C-reactive protein, and lactate in patients with suspected bacterial sepsis. PLoS One 12:e0181704

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Daniels JM, Schoorl M, Snijders D et al (2010) Procalcitonin vs C-reactive protein as predictive markers of response to antibiotic therapy in acute exacerbations of COPD. Chest 138:1108–1115

    Article  CAS  PubMed  Google Scholar 

  32. Gaïni S, Koldkjær OG, Pedersen C, Pedersen SS (2006) Procalcitonin, lipopolysaccharide-binding protein, interleukin-6 and C-reactive protein in community-acquired infections and sepsis: a prospective study. Crit Care 10:R53

    Article  PubMed  PubMed Central  Google Scholar 

  33. Schuetz P, Kutz A, Grolimund E et al (2014) Excluding infection through procalcitonin testing improves outcomes of congestive heart failure patients presenting with acute respiratory symptoms: results from the randomized ProHOSP trial. Int J Cardiol 175:464–472

    Article  PubMed  Google Scholar 

  34. de Jong E, van Oers JA, Beishuizen A et al (2016) Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: a randomised, controlled, open-label trial. Lancet Infect Dis 16:819–827

    Article  PubMed  CAS  Google Scholar 

  35. Schuetz P, Affolter B, Hunziker S et al (2010) Serum procalcitonin C-reactive protein and white blood cell levels following hypothermia after cardiac arrest: a retrospective cohort study. Eur J Clin Invest 40:376–381

    Article  CAS  PubMed  Google Scholar 

  36. Grace E, Turner RM (2014) Use of procalcitonin in patients with various degrees of chronic kidney disease including renal replacement therapy. Clin Infect Dis 59:1761–1767

    Article  CAS  PubMed  Google Scholar 

  37. Kapasi AJ, Dittrich S, González IJ et al (2016) Host biomarkers for distinguishing bacterial from non-bacterial causes of acute febrile illness: a comprehensive review. PLoS One 11:e0160278

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Hoeboer SH, van der Geest PJ, Nieboer D et al (2015) The diagnostic accuracy of procalcitonin for bacteraemia: a systematic review and meta-analysis. Clin Microbiol Infect 21:474–481

    Article  CAS  PubMed  Google Scholar 

  39. Van Rossum A, Wulkan RW, Oudesluys-Murphy AM (2004) Procalcitonin as an early marker of infection in neonates and children. Lancet Infect Dis 4:620–630

    Article  PubMed  Google Scholar 

  40. Vouloumanou EK, Plessa E, Karageorgopoulos DE et al (2011) Serum procalcitonin as a diagnostic marker for neonatal sepsis: a systematic review and meta-analysis. Intensive Care Med 37:747–762

    Article  CAS  PubMed  Google Scholar 

  41. Chiesa C, Pellegrini G, Panero A et al (2003) C-reactive protein, interleukin-6, and procalcitonin in the immediate postnatal period: influence of illness severity, risk status, antenatal and perinatal complications, and infection. Clin Chem 49:60–68

    Article  CAS  PubMed  Google Scholar 

  42. Boraey N, Sheneef A, Mohammad MAA et al (2012) Procalcitonin and C-reactive protein as diagnostic markers of neonatal sepsis. Ginekol Pol 6:e14

    Google Scholar 

  43. Stocker M, van Herk W, el Helou S et al (2017) Procalcitonin-guided decision making for duration of antibiotic therapy in neonates with suspected early-onset sepsis: a multicentre, randomised controlled trial (NeoPIns). Lancet 390:871–881

    Article  CAS  PubMed  Google Scholar 

  44. Hack CE, De Groot ER, Felt-Bersma R et al (1989) Increased plasma levels of interleukin-6 in sepsis. Blood 74:1704–1710

    Article  CAS  PubMed  Google Scholar 

  45. Waage A, Brandtzaeg P, Halstensen A et al (1989) The complex pattern of cytokines in serum from patients with meningococcal septic shock. Association between interleukin 6, interleukin 1, and fatal outcome. J Exp Med 169:333–338

    Article  CAS  PubMed  Google Scholar 

  46. Friedland JS, Porter JC, Daryanani S et al (1996) Plasma proinflammatory cytokine concentrations, Acute Physiology and Chronic Health Evaluation (APACHE) III scores and survival in patients in an intensive care unit. Crit Care Med 24:1775–1781

    Article  CAS  PubMed  Google Scholar 

  47. Oda S, Hirasawa H, Shiga H et al (2005) Sequential measurement of IL-6 blood levels in patients with systemic inflammatory response syndrome (SIRS)/sepsis. Cytokine 29:169–175

    Article  CAS  PubMed  Google Scholar 

  48. Mat-Nor MB, Ralib AM, Abdulah NZ et al (2016) The diagnostic ability of procalcitonin and interleukin-6 to differentiate infectious from noninfectious systemic inflammatory response syndrome and to predict mortality. J Crit Care 33:245–251

    Article  CAS  PubMed  Google Scholar 

  49. Giamarellos-Bourboulis E, Tsangaris I, Kanni T et al (2011) Procalcitonin as an early indicator of outcome in sepsis: a prospective observational study. J Hosp Infect 77:58–63

    Article  CAS  PubMed  Google Scholar 

  50. Peschanski N, Chenevier-Gobeaux C, Mzabi L et al (2016) Prognostic value of PCT in septic emergency patients. Ann Intensive Care 6:47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Liu D, Su L, Han G et al (2015) Prognostic value of procalcitonin in adult patients with sepsis: a systematic review and meta-analysis. PLoS One 10:e0129450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Karlsson S, Heikkinen M, Pettilä V et al (2010) Predictive value of procalcitonin decrease in patients with severe sepsis: a prospective observational study. Crit Care 14:R205

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kutz A, Mueller B, Schuetz PJCC (2015) Prognostic value of procalcitonin in respiratory tract infections across clinical settings. Crit Care 19:P65

    Article  PubMed Central  Google Scholar 

  54. Ruiz-Rodríguez J, Caballero J, Ruiz-Sanmartin A et al (2012) Usefulness of procalcitonin clearance as a prognostic biomarker in septic shock. A prospective pilot study. Med Intensiva 36:475–480

    Article  PubMed  Google Scholar 

  55. Pieralli F, Vannucchi V, Mancini A et al (2015) Procalcitonin kinetics in the first 72 hours predicts 30-day mortality in severely ill septic patients admitted to an intermediate care unit. J Clin Med Res 7:706

    Article  PubMed  PubMed Central  Google Scholar 

  56. Schuetz P, Birkhahn R, Sherwin R et al (2017) Serial procalcitonin predicts mortality in severe sepsis patients: results from the multicenter procalcitonin monitoring sepsis (MOSES) study. Crit Care Med 45:781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ryu J-A, Yang JH, Lee D et al (2015) Clinical usefulness of procalcitonin and C-reactive protein as outcome predictors in critically ill patients with severe sepsis and septic Shock. PLoS One 10:e0138150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Hoeboer S, Groeneveld ABJ (2013) Changes in circulating procalcitonin versus C-reactive protein in predicting evolution of infectious disease in febrile, critically ill patients. PLoS One 17:30

    Google Scholar 

  59. Schuetz P, Maurer P, Punjabi V et al (2013) Procalcitonin decrease over 72 hours in US critical care units predicts fatal outcome in sepsis patients. Crit Care 17:R115

    Article  PubMed  PubMed Central  Google Scholar 

  60. Christ-Crain M, Jaccard-Stolz D, Bingisser R et al (2004) Effect of procalcitonin-guided treatment on antibiotic use and outcome in lower respiratory tract infections: cluster-randomised, single-blinded intervention trial. Lancet 363:600–607

    Article  CAS  PubMed  Google Scholar 

  61. Sager R, Kutz A, Mueller B et al (2017) Procalcitonin-guided diagnosis and antibiotic stewardship revisited. BMC Med 15:15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Bloos F, Trips E, Nierhaus A et al (2016) Effect of sodium selenite administration and procalcitonin-guided therapy on mortality in patients with severe sepsis or septic shock: a randomized clinical trial. JAMA Intern Med 176:1266–1276

    Article  PubMed  Google Scholar 

  63. Schuetz P, Muller B, Christ-Crain M et al (2013) Procalcitonin to initiate or discontinue antibiotics in acute respiratory tract infections. Cochrane Database Syst Rev 8:1297–1371

    Google Scholar 

  64. Schuetz P, Wirz Y, Sager R et al (2018) Effect of procalcitonin-guided antibiotic treatment on mortality in acute respiratory infections: a patient level meta-analysis. Lancet Infect Dis 18:95–107

    Article  CAS  PubMed  Google Scholar 

  65. Schuetz P, Bretscher C, Bernasconi L et al (2017) Overview of procalcitonin assays and procalcitonin-guided protocols for the management of patients with infections and sepsis. Expert Rev Mol Diagn 17:593–601

    Article  CAS  PubMed  Google Scholar 

  66. Lin C, Pang Q (2018) Meta-analysis and systematic review of procalcitonin-guided treatment in acute exacerbation of chronic obstructive pulmonary disease. Clin Respir J 12:10–15

    Article  PubMed  Google Scholar 

  67. Andriolo BN, \Andriolo RB, Salomao R et al (2017) Effectiveness and safety of procalcitonin evaluation for reducing mortality in adults with sepsis, severe sepsis or septic shock Cochrane Database Syst Rev 1(1):CD010959

    PubMed  Google Scholar 

  68. Schmit X, Vincent JLJI (2008) The time course of blood C-reactive protein concentrations in relation to the response to initial antimicrobial therapy in patients with sepsis. Infection 36:213–219

    Article  CAS  PubMed  Google Scholar 

  69. Lisboa T, Seligman R, Diaz E et al (2008) C-reactive protein correlates with bacterial load and appropriate antibiotic therapy in suspected ventilator-associated pneumonia. Crit Care Med 36:166–171

    Article  CAS  PubMed  Google Scholar 

  70. Oliveira CF, Botoni FA, Oliveira CR et al (2013) Procalcitonin versus C-reactive protein for guiding antibiotic therapy in sepsis: a randomized trial. Crit Care Med 41:2336–2343

    Article  CAS  PubMed  Google Scholar 

  71. Bruns AH, Oosterheert JJ, Hak E et al (2008) Usefulness of consecutive CRP measurements in follow-up of treatment for severe CAP. Crit Care 11:R92

    Google Scholar 

  72. Petel D, Winters N, Gore GC et al (2018) Use of C-reactive protein to tailor antibiotic use: a systematic review and meta-analysis. BMJ Open 8:e022133

    Article  PubMed  PubMed Central  Google Scholar 

  73. Osuchowski MF, Ayala A, Bahrami S et al (2018) Minimum quality threshold in pre-clinical sepsis studies (MQTiPSS): an international expert consensus initiative for improvement of animal modeling in sepsis. Shock 50:377–380

    Article  PubMed  PubMed Central  Google Scholar 

  74. Remick DG, Bolgos GR, Siddiqui J et al (2002) Six at six: interleukin-6 measured 6 h after the initiation of sepsis predicts mortality over 3 days. Shock 17:463–467

    Article  PubMed  Google Scholar 

  75. Craciun FL, Iskander KN, Chiswick EL et al (2014) Early murine polymicrobial sepsis predominantly causes renal injury. Shock 41:97–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Craciun FL, Schuller ER, Remick DG (2010) Early enhanced local neutrophil recruitment in peritonitis-induced sepsis improves bacterial clearance and survival. J Immunol 185:6930–6938

    Article  CAS  PubMed  Google Scholar 

  77. Osuchowski MF, Welch K, Siddiqui J et al (2006) Circulating cytokine/inhibitor profiles reshape the understanding of the SIRS/CARS continuum in sepsis and predict mortality. J Immunol 177:1967–1974

    Article  CAS  PubMed  Google Scholar 

  78. Osuchowski MF, Connett J, Welch K et al (2009) Stratification is the key: inflammatory biomarkers accurately direct immunomodulatory therapy in experimental sepsis*. Crit Care Med 37(5):1567–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Seymour CW, Kerti SJ, Lewis AJ et al (2019) Murine sepsis phenotypes and differential treatment effects in a randomized trial of prompt antibiotics and fluids. Crit Care 23:384

    Article  PubMed  PubMed Central  Google Scholar 

  80. Turnbull IR, Javadi P, Buchman TG et al (2004) Antibiotics improve survival in sepsis independent of injury severity but do not change mortality in mice with markedly elevated interleukin 6 levels. Shock 21:121–125

    Article  CAS  PubMed  Google Scholar 

  81. Yang Y, Xie J, Guo F et al (2016) Combination of C-reactive protein, procalcitonin and sepsis-related organ failure score for the diagnosis of sepsis in critical patients. Ann Intensive Care 6:51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

Supported in part by NIH grants T32GM86308, R01GM117519, and R01HL GM 86308-06.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yachana Kataria or Daniel Remick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kataria, Y., Remick, D. (2021). Sepsis Biomarkers. In: Walker, W.E. (eds) Sepsis. Methods in Molecular Biology, vol 2321. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1488-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1488-4_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1487-7

  • Online ISBN: 978-1-0716-1488-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics