Skip to main content

Multielectrode Array Assays Using Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes

  • Protocol
  • First Online:
Pluripotent Stem-Cell Derived Cardiomyocytes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2320))

  • 1908 Accesses

Abstract

Induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iPSC-CMs) have been shown to have great potential to play a key role in investigating cardiac diseases in vitro. Multielectrode array (MEA) system is sometimes preferable to patch-clamp in electrophysiological experiments in terms of several advantages. Here we show our protocol of electrophysiological examinations using MEA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bellin M, Casini S, Davis RP et al (2013) Isogenic human pluripotent stem cell pairs reveal the role of a KCNH2 mutation in long-QT syndrome. EMBO J 32:3161–3175

    Article  CAS  Google Scholar 

  2. Moretti A, Bellin M, Welling A, Jung CB, Lam JT, Bott-Flügel L, Dorn T, Goedel A, Höhnke C, Hofmann F, Seyfarth M (2010) Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med 363(15):1397–1409

    Article  CAS  Google Scholar 

  3. Yazawa M, Hsueh B, Jia X et al (2011) Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature 471:230–236

    Article  CAS  Google Scholar 

  4. Limpitikul WB, Dick IE, Tester DJ et al (2017) A precision medicine approach to the Rescue of Function on malignant Calmodulinopathic long-QT syndrome. Circ Res 120:39–48

    Article  CAS  Google Scholar 

  5. Gibson JK, Yue Y, Bronson J et al (2014) Human stem cell-derived cardiomyocytes detect drug-mediated changes in action potentials and ion currents. J Pharmacol Toxicol Methods 70:255–267

    Article  CAS  Google Scholar 

  6. Peng S, Lacerda AE, Kirsch GE et al (2010) The action potential and comparative pharmacology of stem cell-derived human cardiomyocytes. J Pharmacol Toxicol Methods 61:277–286

    Article  CAS  Google Scholar 

  7. Yamazaki K, Hihara T, Taniguchi T et al (2012) A novel method of selecting human embryonic stem cell-derived cardiomyocyte clusters for assessment of potential to influence QT interval. Toxicol In Vitro 26:335–342

    Article  CAS  Google Scholar 

  8. Liang P, Sallam K, Wu H et al (2016) Patient-specific and genome-edited induced pluripotent stem cell–derived cardiomyocytes elucidate single-cell phenotype of Brugada syndrome. J Am Coll Cardiol 68:2086–2096

    Article  Google Scholar 

  9. Jung CB, Moretti A, Mederos y Schnitzler M et al (2012) Dantrolene rescues arrhythmogenic RYR2 defect in a patient-specific stem cell model of catecholaminergic polymorphic ventricular tachycardia. EMBO Mol Med 4:180–191

    Article  CAS  Google Scholar 

  10. Novak A, Barad L, Zeevi-Levin N et al (2012) Cardiomyocytes generated from CPVT D307H patients are arrhythmogenic in response to β-adrenergic stimulation. J Cell Mol Med 16:468–482

    Article  CAS  Google Scholar 

  11. Bellin M, Marchetto MC, Gage FH et al (2012) Induced pluripotent stem cells: the new patient? Nat Rev Mol Cell Biol 13:713–726

    Article  Google Scholar 

  12. Sinnecker D, Laugwitz KL, Moretti A (2014) Induced pluripotent stem cell-derived cardiomyocytes for drug development and toxicity testing. Pharmacol Ther 143:246–252

    Article  CAS  Google Scholar 

  13. Terrenoire C, Wang K, Chan Tung KW et al (2013) Induced pluripotent stem cells used to reveal drug actions in a long QT syndrome family with complex genetics. J Gen Physiol 141:61–72

    Article  CAS  Google Scholar 

  14. Yoshinaga D, Baba S, Makiyama T et al (2019) Phenotype-based high-throughput classification of long QT syndrome subtypes using human induced pluripotent stem cells. Stem Cell Rep 13:394–404

    Article  CAS  Google Scholar 

  15. Wuriyanghai Y, Makiyama T, Sasaki K et al (2018) Complex aberrant splicing in the induced pluripotent stem cell–derived cardiomyocytes from a patient with long QT syndrome carrying KCNQ1-A344Aspl mutation. Hear Rhythm 15:1566–1574

    Article  Google Scholar 

  16. Abi-Gerges N, Pointon A, Oldman KL et al (2017) Assessment of extracellular field potential and Ca2+ transient signals for early QT/pro-arrhythmia detection using human induced pluripotent stem cell-derived cardiomyocytes. J Pharmacol Toxicol Methods 83:1–15

    Article  CAS  Google Scholar 

  17. del Álamo JC, Lemons D, Serrano R et al (2016) High throughput physiological screening of iPSC-derived cardiomyocytes for drug development. Biochim Biophys Acta, Mol Cell Res 1863:1717–1727

    Article  Google Scholar 

  18. Blinova K, Stohlman J, Vicente J et al (2017) Comprehensive translational assessment of human-induced pluripotent stem cell derived cardiomyocytes for evaluating drug-induced arrhythmias. Toxicol Sci 155:234–247

    Article  CAS  Google Scholar 

  19. Meyer T, Boven KH, Günther E et al (2004) Micro-electrode arrays in cardiac safety pharmacology: a novel tool to study QT interval prolongation. Drug Saf 27(11):763–772

    Article  CAS  Google Scholar 

  20. Halbach MD, Egert U, Hescheler J et al (2003) Estimation of action potential changes from field potential recordings in multicellular mouse cardiac myocyte cultures. Cell Physiol Biochem 13:271–284

    Article  CAS  Google Scholar 

  21. Asakura K, Hayashi S, Ojima A et al (2015) Improvement of acquisition and analysis methods in multi-electrode array experiments with {iPS} cell-derived cardiomyocytes. J Pharmacol Toxicol 75:17–26

    Article  CAS  Google Scholar 

  22. Kawatou M, Masumoto H, Fukushima H et al (2017) Modelling torsade de pointes arrhythmias in vitro in 3D human iPS cell-engineered heart tissue. Nat Commun 8:1–11

    Article  CAS  Google Scholar 

  23. Izumi-Nakaseko H, Kanda Y, Nakamura Y et al (2017) Development of correction formula for field potential duration of human induced pluripotent stem cell-derived cardiomyocytes sheets. J Pharmacol Sci 135:44–50

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by JSPS KAKENHI (Grant Number JP20K17147 to D.Y., JP19K17595 to Y.W., and JP16K09499, JP19K08538 to T.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeru Makiyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yoshinaga, D., Wuriyanghai, Y., Makiyama, T. (2021). Multielectrode Array Assays Using Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. In: Yoshida, Y. (eds) Pluripotent Stem-Cell Derived Cardiomyocytes. Methods in Molecular Biology, vol 2320. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1484-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1484-6_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1483-9

  • Online ISBN: 978-1-0716-1484-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics