Skip to main content

Detection of Viroid RNA and vd-siRNA in N. benthamiana Plants: Northern Blot Analyses for Viroid and vd-siRNAs

  • Protocol
  • First Online:
Viroids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2316))

  • 906 Accesses

Abstract

Viroids are considered the most minimalistic group of pathogens. Despite their presumed inability to encode for proteins, viroids induce several diseases in plants of primary economic importance. The production of viroid derived siRNAs (vd-siRNAs) of 21–24 nt, accompanies viroid infections in plants and results from the activation of the RNA silencing mechanism and specifically the function of Dicer endonucleases. A comprehensive set of experiments for the study and thorough analysis of viroid-infected plants has been developed. Here we present a detailed experimental plan including optimized protocols for plant infection by agroinfiltration, RNA extraction, and northern blot hybridization for the detection of both viroid genomic RNA and vd-siRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flores R, Di Serio F, Navarro B, Duran-Vila N, Owens R (2011) Viroids and viroid diseases of plants. Wiley-Blackwell, Hoboken, New Jersey, pp 307–341

    Google Scholar 

  2. Katsarou K, Rao ALN, Tsagris M, Kalantidis K (2015) Infectious long non-coding RNAs. Biochimie 117:37–47

    Article  CAS  PubMed  Google Scholar 

  3. Papaefthimiou I, Hamilton A, Denti M, Baulcombe D, Tsagris M, Tabler M (2001) Replicating potato spindle tuber viroid RNA is accompanied by short RNA fragments that are characteristic of post-transcriptional gene silencing. Nucleic Acids Res 29(11):2395–2400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Itaya A, Folimonov A, Matsuda Y, Nelson RS, Ding B (2001) Potato spindle tuber viroid as inducer of RNA silencing in infected tomato. Mol Plant Microbe Interact 14(11):1332–1334

    Article  CAS  PubMed  Google Scholar 

  5. Dadami E, Boutla A, Vrettos N, Tzortzakaki S, Karakasilioti I, Kalantidis K (2013) DICER-LIKE 4 but not DICER-LIKE 2 may have a positive effect on potato spindle tuber viroid accumulation in Nicotiana benthamiana. Mol Plant 6(1):232–234

    Article  CAS  PubMed  Google Scholar 

  6. Katsarou K, Mavrothalassiti E, Dermauw W, Van Leeuwen T, Kalantidis K (2016) Combined activity of DCL2 and DCL3 is crucial in the defense against potato spindle tuber viroid. PLoS Pathogens 12:1–24

    Article  Google Scholar 

  7. Katsarou K, Mitta E, Bardani E, Oulas A, Dadami E, Kalantidis K (2018) DCL-suppressed Nicotiana benthamiana plants : valuable tools in research and biotechnology. Mol Plant Pathol 20(3):432–446

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kryovrysanaki N, Alexiadis A, Grigoriadou AM, Katsarou K, Kalantidis K (2019) SERRATE, a miRNA biogenesis factor, affects viroid infection in Nicotiana benthamiana and Nicotiana tabacum. Virology 528:164–175

    Article  CAS  PubMed  Google Scholar 

  9. Chen Q, Lai H, Hurtado J, Stahnke J, Leuzinger K, Dent M (2014) Agroinfiltration as an effective ans scalable strategy of gene delivery for production of pharmaceutical proteins. Adv Tech Biol Med 1(1):1–21

    CAS  Google Scholar 

  10. Leuzinger K et al (2013) Efficient agroinfiltration of plants for high-level transcient expression of recombinant proteins. J Vis Exp 77:50521

    Google Scholar 

  11. Rivera AL, Gómez-Lim M, Fernández F, Loske AM (2012) Physical methods for genetic plant transformation. Phys Life Rev 9(3):308–345

    Article  PubMed  Google Scholar 

  12. Del Toro F, Tenllado F, Chung BN, Canto T (2014) A procedure for the transient expression of genes by agroinfiltration above the permissive threshold to study temperature-sensitive processes in plant-pathogen interactions. Mol Plant Pathol 15(8):848–857

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chaturvedi S, Jung B, Gupta S, Anvari B, Rao ALN (2012) Simple and robust in vivo and in vitro approach for studying virus assembly. J Vis Exp 61:1–5

    Google Scholar 

  14. Annamalai P, Rao ALN (2006) Delivery and expression of functional viral RNA genomes in planta by Agroinfiltration. Curr Protoc Microbiol, Chapter 16:16B.2.1-16B.2.15

    Google Scholar 

  15. Pamela RC, Kanneganti T-D, Huitema E, Kamoun S (2006) In planta expression of oomycete and fungal genes. In: Plant-pathogen interactions. Blackwell, Oxford, pp 35–43

    Chapter  Google Scholar 

  16. Yamamoto T et al (2018) Improvement of the transient expression system for production of recombinant proteins in plants. Sci Rep 8(1):1–10

    Google Scholar 

  17. Wroblewski T, Tomczak A, Michelmore R (2005) Optimization of agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol J 3(2):259–273

    Article  CAS  PubMed  Google Scholar 

  18. Norkunas K, Harding R, Dale J, Dugdale B (2018) Improving agroinfiltration-based transient gene expression in Nicotiana benthamiana. Plant Methods 14(1):1–14

    Article  Google Scholar 

  19. Feramisco JR, Helfman DM, Smart JE, Burridge K, Thomas GP (1982) In: Maniatis T, Fritsch EF, Sambrook J (eds) Molecular cloning. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 194–195

    Google Scholar 

  20. Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18(24):5294–5299

    Article  CAS  PubMed  Google Scholar 

  21. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162(1):156–159

    Article  CAS  PubMed  Google Scholar 

  22. Chomczynski P, Sacchi N (2006) The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction : twenty-something years on. Nat Protoc 1(2):581–585

    Article  CAS  PubMed  Google Scholar 

  23. Chomczynski P, Mackey K (1995) Short technical reports. Modification of the TRI reagent procedure for isolation of RNA from polysaccharide- and proteoglycan-rich sources. Biotechniques 19(6):942−945. PMID: 8747660.

    Google Scholar 

  24. Alwine JC, Kemp DJ, Stark GR (1977) Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci 74(12):5350–5354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gucek T, Trdan S, Jakse J, Javornik B, Matousek J, Radisek S (2017) Diagnostic techniques for viroids. Plant Pathol 66:339–358

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge support of this work by project “PlantUP” [MIS MIS5002803] which is implemented under the Action “Reinforcement of the Research and Innovation Infrastructure,” funded by the Operational Programme “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund). This work was also supported by the grant “Emblematic Action for Research in the Cretan Agrofood sector: Four Institutions, Four References” (2018ΣΕ01300000) held by the General Secretary for Research and Technology of Greece.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kriton Kalantidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Katsarou, K., Kryovrysanaki, N., Kalantidis, K. (2022). Detection of Viroid RNA and vd-siRNA in N. benthamiana Plants: Northern Blot Analyses for Viroid and vd-siRNAs. In: Rao, A.L.N., Lavagi-Craddock, I., Vidalakis, G. (eds) Viroids. Methods in Molecular Biology, vol 2316. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1464-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1464-8_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1463-1

  • Online ISBN: 978-1-0716-1464-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics