Skip to main content

Real-Time Detection of Viroids Using Singleplex and Multiplex Quantitative Polymerase Chain Reaction

  • Protocol
  • First Online:
Viroids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2316))

Abstract

Multiplex quantitative polymerase chain reaction (multiplex qPCR) enables the amplification of more than one target in a single reaction using different reporter dyes with distinct fluorescent spectra. The number of reporter fluorophores is typically restricted to three or four, depending upon the capability of the real-time PCR platform and software used. Each target is amplified by a different set of primers and a uniquely labeled probe that distinguishes each PCR amplicon. Thus, the levels of several targets of interest can be quantified in real time. By combining several reactions in a single tube, multiplex qPCR reduces the quantity, and cost of reagents needed to screen a sample for multiple targets. Specificity and efficiency are not affected by the inclusion of the three assays in a multiplex reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  CAS  Google Scholar 

  2. Broeders S, Huber I, Grohmann L, Berben G, Taverniers I, Mazzara M, Roosens N, Morisset D (2014) Guidelines for validation of qualitative real-time PCR methods. Trends Food Sci Technol 37:115–126

    Article  CAS  Google Scholar 

  3. Boonham N, Kreuze J, Winter S, Van der Vlugt R, Bergervoet J, Tomlinson J, Mumford R (2014) Methods in virus diagnostics: from ELISA to next generation sequencing. Virus Res 186:20–31

    Article  CAS  Google Scholar 

  4. Osman F, Dang T, Bodaghi S, Vidalakis G (2017) One-step multiplex RT-qPCR detects three citrus viroids from different genera in a wide range of hosts. J Virol Methods 245:40–52

    Article  CAS  Google Scholar 

  5. Lin C-Y, Wu M-L, Shen T-L, Yeh H-H, Hung T-H (2015) Multiplex detection, distribution, and genetic diversity of hop stunt viroid and citrus exocortis viroid infecting citrus in Taiwan. Virol J 12:11

    Article  Google Scholar 

  6. Vidalakis G, Wang J (2013) Molecular method for universal detection of citrus viroids. US Patent Publication number 20130115591

    Google Scholar 

  7. Loconsole G, Onelge N, Yokomi RK, Kubaa RA, Savino V, Saponari M (2013) Rapid differentiation of citrus Hop stunt viroid variants by real-time RT-PCR and high-resolution melting analysis. Mol Cell Probes 27:221–229

    Article  CAS  Google Scholar 

  8. Monger W, Tomlinson J, Booonham N, Marn MV, Plesko IM, Molinero-Demilly V, Tassus X, Meekes E, Toonen M, Papayiannis L, Perez-Egusquiza Z, Mehle N, Jansen C, Nielsen SL (2010) Development and inter-laboratory evaluation of real-time PCR assays for the detection of pospiviroids. J Virol Methods 169:207–210

    Article  CAS  Google Scholar 

  9. Papayiannis LC (2014) Diagnostic real-time RT-PCR for the simultaneous detection of citrus exocortis viroid and Hop stunt viroid. J Virol Methods 196:99

    Article  Google Scholar 

  10. Rizza S, Nobile G, Tessitori M, Catara A, Conte E (2009) Real time RT-PCR assay for quantitative detection of citrus viroid III in plant tissues. Plant Pathol 58:181–185

    Article  Google Scholar 

  11. Saponari M, Loconsole G, Liao HH, Jiang B, Savino V, Yokomi RK (2013) Validation of high-throughput real time polymerase chain reaction assays for simultaneous detection of invasive citrus pathogens. J Virol Methods 193:478–486

    Article  CAS  Google Scholar 

  12. Sun N, Deng C, Zhao X, Zhou Q, Ge G, Liu Y, Yan W, Xia Q (2014) Extraction of total nucleic acid based on silica-coated magnetic particles for RT-qPCR detection of plant RNA virus/viroid. J Virol Methods 196:204–211

    Article  CAS  Google Scholar 

  13. Tessitori M, Rizza S, Reina A, Catara V (2005) Real-time RT-PCR based on Sybr-green I for the detection of citrus exocortis and citrus cachexia disease. In: Hilf ME, Duran-Vila N, Rocha-Peña MA (eds) Proceedings of the 16th conference of the International Organization of Citrus Virologists, 2004 Riverside. IOCV, CA, USA, pp 456–459

    Google Scholar 

  14. Josefsen MH, Löfström C, Hansen T, Reynisson E, Hoorfar J (2012) Instrumentation and fluorescent chemistries used in qPCR. In: Filion M (ed) Quantitative real-time PCR in applied microbiology Caister. Academic Press, Norfolk, UK, pp 27–52

    Google Scholar 

  15. Navarro E, Serrano-Heras G, Casatano Aroca MJ, Solera J (2015) Real-time PCR detection chemistry. Clin Chim Acta 439:231–250

    Article  CAS  Google Scholar 

  16. Mackay IM, Arden KE, Nitsche A (2002) Real-time PCR in virology. Nucleic Acids Res 30:1292–1305

    Article  CAS  Google Scholar 

  17. Keer JT, Birch L (2008) Quantitative real-time PCR analysis essentials of nucleic acid analysis: a robust approach. Royal Soc Chem 2008:132–155

    Google Scholar 

  18. Pallas V, Sanchez-Navarro J, Varga A, Aparicio F, James D (2009) Multiplex polymerase chain reaction (PCR) and real-time multiplex PCR for the simultaneous detection of plant viruses. Methods Mol Biol 508:193–208

    Article  CAS  Google Scholar 

  19. Osman F, Hodzic E, Kon S-J, Wang J, Vidalakis G (2015) Development and validation of a multiplex reverse transcription quantitative PCR (RT-qPCR) assay for the rapid detection of citrus tristeza virus, citrus psorosis virus and citrus leaf blotch virus. J Viorl Methods 220:64–75

    Article  CAS  Google Scholar 

  20. Rasmussen R (2001) In: Meuer S, Wittwer C, Nakagawara K-I (eds) Quantification on the LightCycler pages 21-34 in: rapid cycle real-time PCR: methods and applications. Springer Berlin Heidelberg, Berlin, Heidelberg

    Google Scholar 

  21. Svec D, Tichopad A, Novosadova V, Pfaffl MW, Kubista M (2015) How good is a PCR efficiency estimate: recommendations for precise and robust qPCR efficiency assessments. Biomol Detect Quantif 3:9–16

    Article  CAS  Google Scholar 

  22. Pfaffl M (2004) Quantification strategies in real-time PCR A-Z of Quantitative PCR. International University Line (IUL), La Jolla, CA, USA, pp 89–113

    Google Scholar 

  23. Leutenegger CM (2001) The real-time TaqMan PCR and applications in veterinary medicine. Vet Sci Tomorrow 1:1–15

    Google Scholar 

  24. Tan S-h, Osman F, Bodaghi S, Dang T, Greer G, Huang A, Hammado S, Abu-Hajar S, Campos R, Vidalakis G (2019) Full genome characterization of 12 citrus tatter leaf virus isolates for the development of a detection assay. PLoS One 14(10):e0223958. https://doi.org/10.1371/journal.pone.0223958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the California Citrus Nursery Board (CCNB) project “Implementation and streamlining of the newly developed high throughput diagnostic system for citrus nurseries registration” and by the Citrus Research Board (CRB) project “Citrus Clonal Protection Program” (6100) awarded to G. Vidalakis. Additional support was provided by the US Department of Agriculture (USDA) National Institute of Food and Agriculture (NIFA), Hatch (project 1020106), and the National Clean Plant Network (NCPN) which operates under the auspices of USDA Animal and Plant Health Inspection Service (APHIS) (12-8100-1544-CA; 14-, 15-, 16- 8130-0419-CA; AP17PPQS&T00C118; AP18PPQS&T00C107). The findings and conclusions in this publication are those of the author(s) and should not be construed to represent any official USDA or US Government determination or policy. URLs to sponsors’ websites listed below.

1. CRB: https://www.citrusresearch.org

2. CCNB: http://www.ccnb.info/

3. USDA NIFA: https://nifa.usda.gov

4. NCPN: http://nationalcleanplantnetwork.org.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fatima Osman or Georgios Vidalakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Osman, F., Vidalakis, G. (2022). Real-Time Detection of Viroids Using Singleplex and Multiplex Quantitative Polymerase Chain Reaction. In: Rao, A.L.N., Lavagi-Craddock, I., Vidalakis, G. (eds) Viroids. Methods in Molecular Biology, vol 2316. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1464-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1464-8_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1463-1

  • Online ISBN: 978-1-0716-1464-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics