Skip to main content

Short Read-Length Next Generation DNA Sequencing of Antibody CDR Combinations from Phage Selection Outputs

  • Protocol
  • First Online:
Therapeutic Antibodies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2313))

  • 3369 Accesses

Abstract

Phage display is commonly used to select target-binding antibody fragments from large libraries containing billions of unique antibody clones. In practice, selection outputs are often highly heterogenous, making it desirable to recover sequence information from the selected pool. Next Generation DNA Sequencing (NGS) enables the acquisition of sufficient sequencing reads to cover the pool diversity, however read-lengths are typically too short to capture paired antibody complementarity-determining regions (CDRs), which is needed to reconstruct target-binding antibody fragments. Here, we describe a simple in vitro protocol to bring the DNA encoding the antibody CDRs closer together. The final PCR product referred to as a “CDR strip” is suitable for short read-length NGS. In this method, phagemid ssDNA is recovered from antibody phage display biopanning and used as a template to create a heteroduplex with deletions between CDRs of interest. The shorter strand in the heteroduplex is preferentially PCR amplified to generate a CDR strip that is sequenced using NGS. We have also included a bioinformatics approach to analyze the CDR strip populations so that single antibody clones can be created from paired CDR sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228(4705):1315–1317

    Article  CAS  Google Scholar 

  2. Kügler J, Tomszak F, Frenzel A, Hust M (2018) Construction of human immune and naive scFv libraries. Methods Mol Biol 1701:3–24

    Article  Google Scholar 

  3. Nilvebrant J, Sidhu SS (2018) Construction of synthetic antibody phage-display libraries. Methods Mol Biol 1701:45–60

    Article  CAS  Google Scholar 

  4. Geyer CR, McCafferty J, Dübel S, Bradbury AR, Sidhu SS (2012) Recombinant antibodies and in vitro selection technologies. Methods Mol Biol 901:11–32

    Article  CAS  Google Scholar 

  5. Rouet R, Jackson KJL, Langley DB, Christ D (2018) Next-generation sequencing of antibody display repertoires. Front Immunol 9:118

    Article  Google Scholar 

  6. Glanville J, D’Angelo S, Khan TA, Reddy ST, Naranjo L, Ferrara F, Bradbury AR (2015) Deep sequencing in library selection projects: what insight does it bring? Curr Opin Struct Biol 33:146–160

    Article  CAS  Google Scholar 

  7. Fischer N (2011) Sequencing antibody repertoires: the next generation. mAbs 3:17–20

    Article  Google Scholar 

  8. Barreto K, Maruthachalam BV, Hill W, Hogan D, Sutherland AR, Kusalik A, Fonge H, DeCoteau JF, Geyer CR (2019) Next-generation sequencing-guided identification and reconstruction of antibody CDR combinations from phage selection outputs. Nucleic Acids Res 47(9):e50

    Article  CAS  Google Scholar 

  9. Ravn U, Gueneau F, Baerlocher L, Osteras M, Desmurs M, Malinge P, Magistrelli G, Farinelli L, Kosco-Vilbois MH, Fischer N (2010) By-passing in vitro screening--next generation sequencing technologies applied to antibody display and in silico candidate selection. Nucleic Acids Res 38(21):e193

    Article  CAS  Google Scholar 

  10. Lopez T, Nam DH, Kaihara E, Mustafa Z, Ge X (2017) Identification of highly selective MMP-14 inhibitory Fabs by deep sequencing. Biotechnol Bioeng 114:1140–1150

    Article  CAS  Google Scholar 

  11. Weinstein JA, Jiang N, White RA 3rd, Fisher DS, Quake SR (2009) High-throughput sequencing of the zebrafish antibody repertoire. Science 324(5928):807–810

    Article  CAS  Google Scholar 

  12. Henry KA (2018) Next-generation DNA sequencing of VH/VL repertoires: a primer and guide to applications in single-domain antibody discovery. Methods Mol Biol 1701:425–446

    Article  CAS  Google Scholar 

  13. Zhang H, Torkamani A, Jones TM, Ruiz DI, Pons J, Lerner RA (2011) Phenotype-information-phenotype cycle for deconvolution of combinatorial antibody libraries selected against complex systems. Proc Natl Acad Sci U S A 108(33):13456–13461

    Article  CAS  Google Scholar 

  14. D’Angelo S, Kumar S, Naranjo L, Ferrara F, Kiss C, Bradbury AR (2014) From deep sequencing to actual clones. Protein Eng Des Sel 27(10):301–307

    Article  Google Scholar 

  15. Yang W, Yoon A, Lee S, Kim S, Han J, Chung J (2017) Next-generation sequencing enables the discovery of more diverse positive clones from a phage-displayed antibody library. Exp Mol Med 49(3):e308

    Article  CAS  Google Scholar 

  16. TomLey FM (1996) M13 phage growth and single-stranded DNA preparation. Methods Mol Biol 58:359–362

    CAS  PubMed  Google Scholar 

  17. Fellouse FA, Sidhu S (2013) Making antibodies in bacteria. In: Howard GC, Kase MR (eds) Making and using antibodies: a practical handbook. CRC Press, Boca Raton, FL

    Google Scholar 

  18. Kunkel TA (1985) Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A 82(2):488–492

    Article  CAS  Google Scholar 

  19. Tonikian R, Zhang Y, Boone C, Sidhu SS (2007) Identifying specificity profiles for peptide recognition modules from phage-displayed peptide libraries. Nat Protoc 2(6):1368–1386

    Article  CAS  Google Scholar 

  20. Afgan E, Baker D, Batut B, van den Beek M, Bouvier D, Cech M, Chilton J, Clements D, Coraor N, Grüning BA, Guerler A, Hillman-Jackson J, Hiltemann S, Jalili V, Rasche H, Soranzo N, Goecks J, Taylor J, Nekrutenko A, Blankenberg D (2018) The galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res 46:W537–W544

    Article  CAS  Google Scholar 

  21. R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  22. R Studio Team (2020). RStudio: integrated development for R. RStudio, PBC, Boston, MA. http://www.rstudio.com/

  23. Pagès H, Aboyoun P, Gentleman R, DebRoy S (2016) Biostrings: string objects representing biological sequences, and matching algorithms. R package version 2.42.1

    Google Scholar 

  24. Blankenberg D, Gordon A, Von Kuster G, Coraor N, Taylor J, Nekrutenko A, Galaxy Team (2010) Manipulation of FASTQ data with galaxy. Bioinformatics 26(14):1783–1785

    Article  CAS  Google Scholar 

  25. Gordon A (2014) FASTX-toolkit version 0.0.14. https://github.com/agordon/fastx_toolkit.git

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ronald Geyer .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Data 1

(ZIP 335 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pastushok, L., Barreto, K., Geyer, C.R. (2022). Short Read-Length Next Generation DNA Sequencing of Antibody CDR Combinations from Phage Selection Outputs. In: Houen, G. (eds) Therapeutic Antibodies. Methods in Molecular Biology, vol 2313. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1450-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1450-1_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1449-5

  • Online ISBN: 978-1-0716-1450-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics