Skip to main content

Genome Engineering of Yarrowia lipolytica with the PiggyBac Transposon System

  • Protocol
  • First Online:
Yarrowia lipolytica

Abstract

A mutant excision+/integration piggyBac transposase can be used to seamlessly excise a chromosomally integrated, piggyBac-compatible selection marker cassette from the Yarrowia lipolytica genome. This piggyBac transposase-based genome engineering process allows for both positive selection of targeted homologous recombination events and scarless or footprint-free genome modifications after precise marker recovery. Residual non-native sequences left in the genome after marker excision can be minimized (0–4 nucleotides) or customized (user-defined except for a TTAA tetranucleotide). Both of these options reduce the risk of unintended homologous recombination events in strains with multiple genomic edits. A suite of dual positive/negative selection marker pairs flanked by piggyBac inverted terminal repeats (ITRs) have been constructed and are available for precise genome engineering in Y. lipolytica using this method. This protocol specifically describes the split marker homologous recombination-based disruption of Y. lipolytica ADE2 with a piggyBac ITR-flanked URA3 cassette, followed by piggyBac transposase-mediated excision of the URA3 marker to leave a 50 nucleotide synthetic barcode at the ADE2 locus. The resulting ade2 strain is auxotrophic for adenine, which enables the use of ADE2 as a selectable marker for further strain engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jessop-Fabre MM, Jakočiūnas T, Stovicek V, Dai Z, Jensen MK, Keasling JD, Borodina I (2016) EasyClone-MarkerFree: a vector toolkit for marker-less integration of genes into Saccharomyces cerevisiae via CRISPR-Cas9. Biotechnol J 11(8):1110–1117. https://doi.org/10.1002/biot.201600147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Akada R, Kitagawa T, Kaneko S, Toyonaga D, Ito S, Kakihara Y, Hoshida H, Morimura S, Kondo A, Kida K (2006) PCR-mediated seamless gene deletion and marker recycling in Saccharomyces cerevisiae. Yeast 23(5):399–405. https://doi.org/10.1002/yea.1365

    Article  CAS  PubMed  Google Scholar 

  3. Fickers P, Le Dall MT, Gaillardin C, Thonart P, Nicaud JM (2003) New disruption cassettes for rapid gene disruption and marker rescue in the yeast Yarrowia lipolytica. J Microbiol Methods 55(3):727–737

    Article  CAS  PubMed  Google Scholar 

  4. Blazeck J, Hill A, Liu L, Knight R, Miller J, Pan A, Otoupal P, Alper HS (2014) Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nat Commun 5:3131. https://doi.org/10.1038/ncomms4131

    Article  CAS  PubMed  Google Scholar 

  5. Beopoulos A, Mrozova Z, Thevenieau F, Dall M-T, Hapala I, Papanikolaou S, Chardot T, Nicaud J-M (2008) Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl Environ Microbiol 74:7779–7789. https://doi.org/10.1128/aem.01412-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Solis-Escalante D, van den Broek M, Kuijpers NG, Pronk JT, Boles E, Daran JM, Daran-Lapujade P (2015) The genome sequence of the popular hexose-transport-deficient Saccharomyces cerevisiae strain EBY.VW4000 reveals loxP/Cre-induced translocations and gene loss. FEMS Yeast Res 15(2):fou004. https://doi.org/10.1093/femsyr/fou004

    Article  CAS  PubMed  Google Scholar 

  7. Delneri D, Tomlin GC, Wixon JL, Hutter A, Sefton M, Louis EJ, Oliver SG (2000) Exploring redundancy in the yeast genome: an improved strategy for use of the cre-loxP system. Gene 252(1–2):127–135

    Article  CAS  PubMed  Google Scholar 

  8. Rigouin C, Gueroult M, Croux C, Dubois G, Borsenberger V, Barbe S, Marty A, Daboussi F, André I, Bordes F (2017) Production of medium chain fatty acids by Yarrowia lipolytica: combining molecular design and TALEN to engineer the fatty acid synthase. ACS Synth Biol 6(10):1870–1879. https://doi.org/10.1021/acssynbio.7b00034

    Article  CAS  PubMed  Google Scholar 

  9. Schwartz CM, Hussain MS, Blenner M, Wheeldon I (2016) Synthetic RNA polymerase III promoters facilitate high-efficiency CRISPR-Cas9-mediated genome editing in Yarrowia lipolytica. ACS Synth Biol 5(4):356–359. https://doi.org/10.1021/acssynbio.5b00162

    Article  CAS  PubMed  Google Scholar 

  10. Schwartz C, Shabbir-Hussain M, Frogue K, Blenner M, Wheeldon I (2017) Standardized markerless gene integration for pathway engineering in Yarrowia lipolytica. ACS Synth Biol 6(3):402–409. https://doi.org/10.1021/acssynbio.6b00285

    Article  CAS  PubMed  Google Scholar 

  11. Li X, Burnight ER, Cooney AL, Malani N, Brady T, Sander JD, Staber J, Wheelan SJ, Joung JK, McCray PB Jr, Bushman FD, Sinn PL, Craig NL (2013) piggyBac transposase tools for genome engineering. Proc Natl Acad Sci U S A 110(25):E2279–E2287. https://doi.org/10.1073/pnas.1305987110

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wagner JM, Williams EV, Alper HS (2018) Developing a piggyBac transposon system and compatible selection markers for insertional mutagenesis and genome engineering in Yarrowia lipolytica. Biotechnol J 13(5):e1800022. https://doi.org/10.1002/biot.201800022

    Article  CAS  PubMed  Google Scholar 

  13. Mitra R, Fain-Thornton J, Craig NL (2008) piggyBac can bypass DNA synthesis during cut and paste transposition. EMBO J 27(7):1097–1109. https://doi.org/10.1038/emboj.2008.41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li Z, Michael IP, Zhou D, Nagy A, Rini JM (2013) Simple piggyBac transposon-based mammalian cell expression system for inducible protein production. Proc Natl Acad Sci U S A 110(13):5004–5009. https://doi.org/10.1073/pnas.1218620110

    Article  PubMed  PubMed Central  Google Scholar 

  15. Li MA, Turner DJ, Ning Z, Yusa K, Liang Q, Eckert S, Rad L, Fitzgerald TW, Craig NL, Bradley A (2011) Mobilization of giant piggyBac transposons in the mouse genome. Nucleic Acids Res 39(22):e148. https://doi.org/10.1093/nar/gkr764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li J, Zhang JM, Li X, Suo F, Zhang MJ, Hou W, Han J, Du LL (2011) A piggyBac transposon-based mutagenesis system for the fission yeast Schizosaccharomyces pombe. Nucleic Acids Res 39(6):e40. https://doi.org/10.1093/nar/gkq1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Saha S, Woodard LE, Charron EM, Welch RC, Rooney CM, Wilson MH (2015) Evaluating the potential for undesired genomic effects of the piggyBac transposon system in human cells. Nucleic Acids Res 43(3):1770–1782. https://doi.org/10.1093/nar/gkv017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Eason RG, Pourmand N, Tongprasit W, Herman ZS, Anthony K, Jejelowo O, Davis RW, Stolc V (2004) Characterization of synthetic DNA bar codes in Saccharomyces cerevisiae gene-deletion strains. Proc Natl Acad Sci U S A 101(30):11046–11051. https://doi.org/10.1073/pnas.0403672101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Blazeck J, Liu L, Redden H, Alper H (2011) Tuning gene expression in Yarrowia lipolytica by a hybrid promoter approach. Appl Environ Microbiol 77(22):7905–7914. https://doi.org/10.1128/AEM.05763-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Blazeck J, Reed B, Garg R, Gerstner R, Pan A, Agarwala V, Alper HS (2013) Generalizing a hybrid synthetic promoter approach in Yarrowia lipolytica. Appl Microbiol Biotechnol 97(7):3037–3052. https://doi.org/10.1007/s00253-012-4421-5

    Article  CAS  PubMed  Google Scholar 

  21. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345. https://doi.org/10.1038/nmeth.1318

    Article  CAS  PubMed  Google Scholar 

  22. Naito Y, Hino K, Bono H, Ui-Tei K (2015) CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31(7):1120–1123. https://doi.org/10.1093/bioinformatics/btu743

    Article  CAS  PubMed  Google Scholar 

  23. Bredeweg EL, Pomraning KR, Dai Z, Nielsen J, Kerkhoven EJ, Baker SE (2017) A molecular genetic toolbox for Yarrowia lipolytica. Biotechnol Biofuels 10:2. https://doi.org/10.1186/s13068-016-0687-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded through the Office of Naval Research (ONR) under grant N00014-15-1-2785. A portion was also funded by Undergraduate Research Fellowships (URF) awarded to M.V.V. and E.V.W. by the University of Texas at Austin. J.M.W. acknowledges additional support from the National Science Foundation (NSF) Graduate Research Fellowship Program (DGE-1110007).

We would like to thank Kelly Markham for helpful discussions and general Yarrowia lipolytica strain engineering expertise. We would also like to thank Dr. Yuki Naito for updating the CRISPRdirect interface to include sgRNA specificity checks for the Y. lipolytica genome.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hal S. Alper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wagner, J.M. et al. (2021). Genome Engineering of Yarrowia lipolytica with the PiggyBac Transposon System. In: Wheeldon, I., Blenner, M. (eds) Yarrowia lipolytica. Methods in Molecular Biology, vol 2307. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1414-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1414-3_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1413-6

  • Online ISBN: 978-1-0716-1414-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics