Skip to main content

Modeling the 3D Genome Using Hi-C and Nuclear Lamin-Genome Contacts

  • Protocol
  • First Online:
Hi-C Data Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2301))

Abstract

The three-dimensional (3D) organization of the genome is shaped by interactions with multiple structures within the nucleus, affecting gene expression outcomes. Technological breakthroughs in recent years have generated vast data reflecting various aspects of nuclear genome architecture in space and time. Integrating these datasets into comprehensive 3D genome models can reveal new insights into genome structure and regulation in normal and disease states. In this chapter, we provide a step-by-step guide on how to generate publication-ready integrated 3D genome models from (raw) Hi-C data and from lamin-genome (LAD) contacts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dekker J, Marti-Renom MA, Mirny LA (2013) Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat Rev Genet 14:390–403

    Article  CAS  Google Scholar 

  2. Lieberman-Aiden E, Van Berkum NL, Williams L et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293

    Article  CAS  Google Scholar 

  3. Guelen L, Pagi L, Brasset E et al (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453:948–951

    Article  CAS  Google Scholar 

  4. Lund E, Oldenburg AR, Collas P (2014) Enriched domain detector: a program for detection of wide genomic enrichment domains robust against local variations. Nucleic Acids Res 42:e92

    Article  CAS  Google Scholar 

  5. Beagan JA, Phillips-Cremins JE (2020) On the existence and functionality of topologically associating domains. Nat Genet 52:8–16

    Article  CAS  Google Scholar 

  6. Van Steensel B, Belmont AS (2017) Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell 169:780–791

    Article  Google Scholar 

  7. Parmar JJ, Woringer M, Zimmer C (2019) How the genome folds: the biophysics of four-dimensional chromatin organization. Annu Rev Biophys 48:231–253

    Article  CAS  Google Scholar 

  8. Buckle A, Brackley CA, Boyle S et al (2018) Polymer simulations of heteromorphic chromatin predict the 3D folding of complex genomic loci. Mol Cell 72:786–797

    Article  CAS  Google Scholar 

  9. Chiang M, Michieletto D, Brackley CA et al (2019) Polymer modeling predicts chromosome reorganization in senescence. Cell Rep 28:3212–3223

    Article  CAS  Google Scholar 

  10. Paulsen J, Sekelja M, Oldenburg AR et al (2017) Chrom3D: three-dimensional genome modeling from Hi-C and nuclear lamin-genome contacts. Genome Biol 18:21

    Article  Google Scholar 

  11. Li Q, Tjong H, Li X et al (2017) The three-dimensional genome organization of Drosophila melanogaster through data integration. Genome Biol 18:145

    Article  Google Scholar 

  12. Servant N, Varoquaux N, Lajoie BR et al (2015) HiC-pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol 16:259

    Article  Google Scholar 

  13. Filippova D, Patro R, Duggal G et al (2014) Identification of alternative topological domains in chromatin. Algorithm Mol Biol 9:14

    Article  Google Scholar 

  14. Paulsen J, Ali TML, Nekrasov M et al (2019) Long-range interactions between topologically associating domains shape the four-dimensional genome during differentiation. Nat Genet 51:835–843

    Article  CAS  Google Scholar 

  15. Paulsen J, Ali TML, Collas P (2018) Computational 3D genome modeling using Chrom3D. Nat Protoc 13:1137–1152

    Article  CAS  Google Scholar 

  16. Goddard TD, Huang CC, Meng EC et al (2018) UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci 27:14–25

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Paulsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Paulsen, J., Collas, P. (2022). Modeling the 3D Genome Using Hi-C and Nuclear Lamin-Genome Contacts. In: Bicciato, S., Ferrari, F. (eds) Hi-C Data Analysis. Methods in Molecular Biology, vol 2301. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1390-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1390-0_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1389-4

  • Online ISBN: 978-1-0716-1390-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics