Skip to main content

A Polymer Physics Model to Dissect Genome Organization in Healthy and Pathological Phenotypes

  • Protocol
  • First Online:
Hi-C Data Analysis

Abstract

Novel technologies revealed a nontrivial spatial organization of the chromosomes within the cell nucleus, which includes different levels of compartmentalization and architectural patterns. Notably, such complex three-dimensional structure plays a crucial role in vital biological functions and its alterations can produce extensive rewiring of genomic regulatory regions, thus leading to gene misexpression and disease. Here, we show that theoretical and computational approaches, based on polymer physics, can be employed to dissect chromatin contacts in three-dimensional space and to predict the effects of pathogenic structural variants on the genome architecture. In particular, we discuss the folding of the human EPHA4 and the murine Pitx1 loci as case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lieberman-Aiden E, Van Berkum NL, Williams L et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science (80- ) 326:289–293. https://doi.org/10.1126/science.1181369

    Article  CAS  Google Scholar 

  2. Beagrie RA, Scialdone A, Schueler M et al (2017) Complex multi-enhancer contacts captured by genome architecture mapping. Nature 543:519–524. https://doi.org/10.1038/nature21411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bintu B, Mateo LJ, Su J-H et al (2018) Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science (80- ) 362:eaau1783. https://doi.org/10.1126/science.aau1783

    Article  CAS  Google Scholar 

  4. Dekker J, Mirny L (2016) The 3D genome as moderator of chromosomal communication. Cell 164:P1110–P1121. https://doi.org/10.1016/j.cell.2016.02.007

    Article  CAS  Google Scholar 

  5. Dixon JR, Selvaraj S, Yue F et al (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–380. https://doi.org/10.1038/nature11082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nora EP, Goloborodko A, Valton AL et al (2017) Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169:930–944.e22. https://doi.org/10.1016/j.cell.2017.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rao SSP, Huntley MH, Durand NC et al (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:1665–1680. https://doi.org/10.1016/j.cell.2014.11.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Phillips-Cremins JE, Sauria MEG, Sanyal A et al (2013) Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 153:1281–1295. https://doi.org/10.1016/j.cell.2013.04.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fraser J, Ferrai C, Chiariello AM et al (2015) Hierarchical folding and reorganization of chromosomes are linked to transcriptional changes in cellular differentiation. Mol Syst Biol 11:852. https://doi.org/10.15252/msb.20156492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lupiáñez DG, Kraft K, Heinrich V et al (2015) Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161:1012–1025. https://doi.org/10.1016/j.cell.2015.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Valton AL, Dekker J (2016) TAD disruption as oncogenic driver. Curr Opin Genet Dev 36:34–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Weischenfeldt J, Dubash T, Drainas AP et al (2017) Pan-cancer analysis of somatic copy-number alterations implicates IRS4 and IGF2 in enhancer hijacking. Nat Genet 49:65–74. https://doi.org/10.1038/ng.3722

    Article  CAS  PubMed  Google Scholar 

  13. Spielmann M, Lupiáñez DG, Mundlos S (2018) Structural variation in the 3D genome. Nat Rev Genet 19:453–467. https://doi.org/10.1038/s41576-018-0007-0

    Article  CAS  PubMed  Google Scholar 

  14. Brackley CA, Johnson J, Michieletto D et al (2017) Nonequilibrium chromosome looping via molecular slip links. Phys Rev Lett 119:138101. https://doi.org/10.1103/PhysRevLett.119.138101

    Article  CAS  PubMed  Google Scholar 

  15. Bianco S, Lupiáñez DG, Chiariello AM et al (2018) Polymer physics predicts the effects of structural variants on chromatin architecture. Nat Genet 50:662–667. https://doi.org/10.1038/s41588-018-0098-8

    Article  CAS  PubMed  Google Scholar 

  16. Esposito A, Annunziatella C, Bianco S et al (2018) Models of polymer physics for the architecture of the cell nucleus. Wiley Interdiscip Rev Syst Biol Med 11:e1444

    Article  PubMed  PubMed Central  Google Scholar 

  17. Barbieri M, Chotalia M, Fraser J et al (2012) Complexity of chromatin folding is captured by the strings and binders switch model. Proc Natl Acad Sci U S A 109:16173–16178. https://doi.org/10.1073/pnas.1204799109

    Article  PubMed  PubMed Central  Google Scholar 

  18. Conte M, Esposito A, Fiorillo L et al (2019) Efficient computational implementation of polymer physics models to explore chromatin structure. Int J Parallel Emerg Distrib Syst. https://doi.org/10.1080/17445760.2019.1643020

  19. Buckle A, Brackley CA, Boyle S et al (2018) Polymer simulations of heteromorphic chromatin predict the 3D folding of complex genomic loci. Mol Cell 72:786–797.e11. https://doi.org/10.1016/j.molcel.2018.09.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nicodemi M, Prisco A (2009) Thermodynamic pathways to genome spatial organization in the cell nucleus. Biophys J 96:2168–2177. https://doi.org/10.1016/j.bpj.2008.12.3919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jost D, Carrivain P, Cavalli G, Vaillant C (2014) Modeling epigenome folding: formation and dynamics of topologically associated chromatin domains. Nucleic Acids Res 42:9553–9561. https://doi.org/10.1093/nar/gku698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sanborn AL, Rao SSPP, Huang S-CC et al (2015) Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc Natl Acad Sci U S A 112:E6456–E6465. https://doi.org/10.1073/pnas.1518552112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fudenberg G, Imakaev M, Lu C et al (2016) Formation of chromosomal domains by loop extrusion. Cell Rep 15:2038–2049. https://doi.org/10.1016/j.celrep.2016.04.085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chiariello AM, Annunziatella C, Bianco S et al (2016) Polymer physics of chromosome large-scale 3D organisation. Sci Rep 6:29775. https://doi.org/10.1038/srep29775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. DeLaurier A, Schweitzer R, Logan M (2006) Pitx1 determines the morphology of muscle, tendon, and bones of the hindlimb. Dev Biol 299:22–34. https://doi.org/10.1016/j.ydbio.2006.06.055

    Article  CAS  PubMed  Google Scholar 

  26. Kragesteen BK, Spielmann M, Paliou C et al (2018) Dynamic 3D chromatin architecture contributes to enhancer specificity and limb morphogenesis. Nat Genet 50:1463–1473. https://doi.org/10.1038/s41588-018-0221-x

    Article  CAS  PubMed  Google Scholar 

  27. Annunziatella C, Chiariello AM, Bianco S, Nicodemi M (2016) Polymer models of the hierarchical folding of the Hox-B chromosomal locus. Phys Rev E 94:042402. https://doi.org/10.1103/PhysRevE.94.042402

    Article  CAS  PubMed  Google Scholar 

  28. Bianco S, Chiariello AM, Annunziatella C et al (2017) Predicting chromatin architecture from models of polymer physics. Chromosom Res 25:25–34. https://doi.org/10.1007/s10577-016-9545-5

    Article  CAS  Google Scholar 

  29. Fiorillo L, Bianco S, Chiariello AM et al (2020) Inference of chromosome 3D structures from GAM data by a physics computational approach. Methods 181-182:70–79. https://doi.org/10.1016/j.ymeth.2019.09.018

    Article  CAS  PubMed  Google Scholar 

  30. Kremer K, Grest GS (1990) Dynamics of entangled linear polymer melts: a molecular-dynamics simulation. J Chem Phys 92:5057–5086. https://doi.org/10.1063/1.458541

    Article  CAS  Google Scholar 

  31. Annunziatella C, Chiariello AM, Esposito A et al (2018) Molecular dynamics simulations of the strings and binders switch model of chromatin. Methods 142:81–88. https://doi.org/10.1016/j.ymeth.2018.02.024

    Article  CAS  PubMed  Google Scholar 

  32. Bianco S, Annunziatella C, Andrey G et al (2019) Modeling single-molecule conformations of the HoxD region in mouse embryonic stem and cortical neuronal cells. Cell Rep 28:1574–1583.e4. https://doi.org/10.1016/j.celrep.2019.07.013

    Article  CAS  PubMed  Google Scholar 

  33. Paliou C, Guckelberger P, Schöpflin R et al (2019) Preformed chromatin topology assists transcriptional robustness of Shh during limb development. Proc Natl Acad Sci U S A 116:12390–12399. https://doi.org/10.1073/pnas.1900672116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chiariello AM, Esposito A, Annunziatella C et al (2017) A polymer physics investigation of the architecture of the murine orthologue of the 7q11.23 human locus. Front Neurosci 11:559. https://doi.org/10.3389/fnins.2017.00559

    Article  PubMed  PubMed Central  Google Scholar 

  35. Spielmann M, Brancati F, Krawitz PM et al (2012) Homeotic arm-to-leg transformation associated with genomic rearrangements at the PITX1 locus. Am J Hum Genet 91:P629–P635. https://doi.org/10.1016/j.ajhg.2012.08.014

    Article  CAS  Google Scholar 

  36. Al-Qattan MM, Al-Thunayan A, AlAbdulkareem I, Al Balwi M (2013) Liebenberg syndrome is caused by a deletion upstream to the PITX1 gene resulting in transformation of the upper limbs to reflect lower limb characteristics. Gene 524:65–71. https://doi.org/10.1016/j.gene.2013.03.120

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Nicodemi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Conte, M. et al. (2022). A Polymer Physics Model to Dissect Genome Organization in Healthy and Pathological Phenotypes. In: Bicciato, S., Ferrari, F. (eds) Hi-C Data Analysis. Methods in Molecular Biology, vol 2301. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1390-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1390-0_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1389-4

  • Online ISBN: 978-1-0716-1390-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics