Skip to main content

Probing the Surface-Attached In Vitro Microbial Biofilms with Atomic Force (AFM) and Scanning Probe Microscopy (SPM)

  • Protocol
  • First Online:
Analytical Methodologies for Biofilm Research

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Bacterial adhesion on to the various biotic or abiotic surfaces and subsequent biofilm formation paves the path of microbial contamination in various clinical and industrial environments. The mode of biofilm formation and propagation depends on various factors such as availability of nutrient sources, ambient environmental conditions such as temperature, pH, salinity, and coping with the presence of various antimicrobials of the surroundings. Biofilm formation is a cell density dependent signaling mechanism under extreme stress conditions for survival of microorganisms. They consist of proteins, nucleic acids, polysaccharides, and lipids that are constantly being exchanged between the neighboring bacterial cells enclosed within a matrix of extracellular polymeric substances (EPS). The mechanism of bacteria–surface interaction can be best described by the advancements of microscopic techniques. This chapter will focus on the recent developments on the diverse and powerful tools such as atomic force microscopy (AFM) and surface probe microscopy (SPM) for understanding the nanoscale adhesive forces dominating the behavior and structure of biofilms and shedding light on the biofilm control strategies within clinical and industrial environments. These newer visualization techniques allow us with the opportunities of observing topographical landscape of bacterial cells through image heights, resolved structures of surface macromolecules, nanomechanical properties of microbial adhesion forces, and mode of receptor–ligand interaction (antibiofilm compounds) at the biofilm interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Muhammad MH, Idris AL, Fan X, Guo Y, Yu Y, Jin X et al (2020) Beyond risk: bacterial biofilms and their regulating approaches. Front Microbiol:11

    Google Scholar 

  2. Lahiri D, Dash S, Dutta R, Nag M (2019) Elucidating the effect of anti-biofilm activity of bioactive compounds extracted from plants. J Biosci 44(2):52

    Article  PubMed  Google Scholar 

  3. Boudarel H, Mathias JD, Blaysat B, Grédiac M (2018) Towards standardized mechanical characterization of microbial biofilms: analysis and critical review. NPJ Biofilms Microbiomes 4(1):1–15

    Article  Google Scholar 

  4. Even C, Marlière C, Ghigo JM, Allain JM, Marcellan A, Raspaud E (2017) Recent advances in studying single bacteria and biofilm mechanics. Adv Colloid Interf Sci 247:573–588

    Article  CAS  Google Scholar 

  5. Di Somma A, Moretta A, Canè C, Cirillo A, Duilio A (2020) Inhibition of bacterial biofilm formation. In: Bacterial biofilms. IntechOpen

    Google Scholar 

  6. Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Ann Rev Microbiol 41(1):435–464

    Article  CAS  Google Scholar 

  7. Solano C, Echeverz M, Lasa I (2014) Biofilm dispersion and quorum sensing. Curr Opin Microbiol 18:96–104

    Article  CAS  PubMed  Google Scholar 

  8. Kimkes TE, Heinemann M (2020) How bacteria recognize and respond to surface contact. FEMS Microbiol Rev 44(1):106–122

    Article  CAS  PubMed  Google Scholar 

  9. Kovács ÁT, Dragoš A (2019) Evolved biofilm: review on the experimental evolution studies of Bacillus subtilis pellicles. J Mol Biol 431(23):4749–4759

    Article  PubMed  CAS  Google Scholar 

  10. Kanematsu H, Barry DM (2020) Formation and control of biofilm in various environments. Springer, Berlin

    Book  Google Scholar 

  11. Yuan L, Hansen MF, Røder HL, Wang N, Burmølle M, He G (2020) Mixed-species biofilms in the food industry: current knowledge and novel control strategies. Crit Rev Food Sci Nutr 60(13):2277–2293

    Article  PubMed  Google Scholar 

  12. Vestby LK, Grønseth T, Simm R, Nesse LL (2020) Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics 9(2):59

    Article  CAS  PubMed Central  Google Scholar 

  13. Mulat M, Pandita A, Khan F (2019) Medicinal plant compounds for combating the multi-drug resistant pathogenic bacteria: a review. Curr Pharm Biotechnol 20(3):183–196

    Article  CAS  PubMed  Google Scholar 

  14. Hosseini M, Shapouri Moghaddam A, Derakhshan S, Hashemipour SMA, Hadadi-Fishani M, Pirouzi A, Khaledi A (2020) Correlation between biofilm formation and antibiotic resistance in MRSA and MSSA isolated from clinical samples in Iran: a systematic review and meta-analysis. Microbial Drug Resistance

    Google Scholar 

  15. Rajput A, Thakur A, Sharma S, Kumar M (2018) aBiofilm: a resource of anti-biofilm agents and their potential implications in targeting antibiotic drug resistance. Nucleic Acids Res 46(D1):D894–D900

    Article  CAS  PubMed  Google Scholar 

  16. Garrett TR, Bhakoo M, Zhang Z (2008) Bacterial adhesion and biofilms on surfaces. Prog Nat Sci 18(9):1049–1056

    Article  CAS  Google Scholar 

  17. Liu C, Sun D, Zhu J, Liu J, Liu W (2020) The regulation of bacterial biofilm formation by cAMP-CRP: a mini-review. Front Microbiol:11

    Google Scholar 

  18. Watnick P, Kolter R (2000) Biofilm, city of microbes. J Bacteriol 182(10):2675–2679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hu H, He J, Liu J, Yu H, Tang J, Zhang J (2016) Role of N-acyl-homoserine lactone (AHL) based quorum sensing on biofilm formation on packing media in wastewater treatment process. RSC Adv 6(14):11128–11139

    Article  CAS  Google Scholar 

  20. Pantanella F, Valenti P, Natalizi T, Passeri D, Berlutti F (2013) Analytical techniques to study microbial biofilm on abiotic surfaces: pros and cons of the main techniques currently in use. Ann Ig 25(1):31–42

    CAS  PubMed  Google Scholar 

  21. Kırmusaoğlu S (2019) The methods for detection of biofilm and screening antibiofilm activity of agents. In: Antimicrobials, antibiotic resistance, antibiofilm strategies and activity methods. IntechOpen

    Chapter  Google Scholar 

  22. Vahabi S, Salman BN, Javanmard A (2013) Atomic force microscopy application in biological research: a review study. Iran J Med Sci 38(2):76

    PubMed  PubMed Central  Google Scholar 

  23. Chatterjee S, Gadad SS, Kundu TK (2010) Atomic force microscopy. Resonance 15(7):622–642

    Article  CAS  Google Scholar 

  24. Parot P, Dufrêne YF, Hinterdorfer P, Le Grimellec C, Navajas D, Pellequer JL, Scheuring S (2007) Past, present and future of atomic force microscopy in life sciences and medicine. J Mol Recog Interdisciplin J 20(6):418–431

    Article  CAS  Google Scholar 

  25. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56(9):930

    Article  CAS  PubMed  Google Scholar 

  26. Wright CJ, Shah MK, Powell LC, Armstrong I (2010) Application of AFM from microbial cell to biofilm. Scanning 32(3):134–149

    Article  CAS  PubMed  Google Scholar 

  27. Bremer PJ, Geese GG, Drake B (1992) Atomic force microscopy examination of the topography of a hydrated bacterial biofilm on a copper surface. Curr Microbiol 24(4):223–230

    Article  CAS  Google Scholar 

  28. Arenas-Alatorre J, Silva-Velazquez Y, Medina AA, Rivera M (2010) Advantages and limitations of OM, SEM, TEM and AFM in the study of ancient decorated pottery. Appl Phys A 98(3):617–624

    Article  CAS  Google Scholar 

  29. Yablon D (2020) The importance of the probe in AFM part 1: the tip – 2016. Wiley Analytical Science. https://analyticalscience.wiley.com/do/10.1002/micro.2100/full/. Accessed 22 Aug 2020

  30. Lantz MA, Gotsmann B, Jaroenapibal P, Jacobs TD, O'Connor SD, Sridharan K, Carpick RW (2012) Wear-resistant nanoscale silicon carbide tips for scanning probe applications. Adv Funct Mater 22(8):1639–1645

    Article  CAS  Google Scholar 

  31. Rogers B, Manning L, Sulchek T, Adams JD (2004) Improving tapping mode atomic force microscopy with piezoelectric cantilevers. Ultramicroscopy 100(3–4):267–276

    Article  CAS  PubMed  Google Scholar 

  32. Marrese M, Guarino V, Ambrosio L (2017) Atomic force microscopy: a powerful tool to address scaffold design in tissue engineering. J Func Biomater 8(1):7

    Article  CAS  Google Scholar 

  33. Bhushan B, Marti O (2017) Scanning probe microscopy—principle of operation, instrumentation, and probes. In: Nanotribology and nanomechanics. Springer, Cham, pp 33–93

    Chapter  Google Scholar 

  34. Khan MK, Wang QY, Fitzpatrick ME (2016) Atomic force microscopy (AFM) for materials characterization. In: Materials characterization using nondestructive evaluation (NDE) methods. Woodhead Publishing, pp 1–16

    Google Scholar 

  35. Jalili N, Laxminarayana K (2004) A review of atomic force microscopy imaging systems: application to molecular metrology and biological sciences. Mechatronics 14(8):907–945

    Article  Google Scholar 

  36. AG JI (2012) NanoWizard® AFM handbook

    Google Scholar 

  37. Bramowicz M, Kulesza S, Rychlik K (2012) A comparison between contact and tapping AFM mode in surface morphology studies. Technical Sciences, University of Warmia and Mazury in Olsztyn, pp 307–318

    Google Scholar 

  38. AFM Modes (2020) https://www.nanophys.kth.se/nanolab/afm/icon/bruker-help/Content/SPM%20Training%20Guide/Atomic%20Force%20Microscopy%20(AFM)/AFM%20Modes.htm. Accessed 24 Aug 2020

    Google Scholar 

  39. Liu S, Wang Y (2011) A review of the application of atomic force microscopy (AFM) in food science and technology. In: Advances in food and nutrition research, vol 62. Academic Press, pp 201–240

    Google Scholar 

  40. Stark M, Stark RW, Heckl WM, Guckenberger R (2000) Spectroscopy of the anharmonic cantilever oscillations in tapping-mode atomic-force microscopy. Appl Phys Lett 77(20):3293–3295

    Article  CAS  Google Scholar 

  41. Liu S, Wang Y (2010) Application of AFM in microbiology: a review. Scanning 32(2):61–73

    Article  CAS  PubMed  Google Scholar 

  42. Schirmeisen A, Anczykowski B, Fuchs H (2007) Dynamic modes of atomic force microscopy. Shnt 737

    Google Scholar 

  43. Schilardi P, Diaz C, Flores C, Alvarez F, Fernández M, de Mele L (2010) Atomic force microscopy and optical microscopy: suitable tools for the study of the initial stages of biofilm formation. Curr Res Technol Educ Top Appl Microbiol Microbial Biotechnol Formatex:860–869

    Google Scholar 

  44. Zhong J (2011) From simple to complex: investigating the effects of lipid composition and phase on the membrane interactions of biomolecules using in situ atomic force microscopy. Integr Biol 3(6):632–644

    Article  CAS  Google Scholar 

  45. Bowen WR, Hilal N, Lovitt RW, Wright CJ (1998) Direct measurement of the force of adhesion of a single biological cell using an atomic force microscope. Colloids Surf A Physicochem Eng Asp 136(1–2):231–234

    Article  CAS  Google Scholar 

  46. James SA, Hilal N, Wright CJ (2017) Atomic force microscopy studies of bioprocess engineering surfaces–imaging, interactions and mechanical properties mediating bacterial adhesion. Biotechnol J 12(7):1600698

    Article  CAS  Google Scholar 

  47. Mulansky S, Saballus M, Friedrichs J, Bley T, Boschke E (2017) A novel protocol to prepare cell probes for the quantification of microbial adhesion and biofilm initiation on structured bioinspired surfaces using AFM for single-cell force spectroscopy: dedicated to Prof. em. Dr. Dr. HC Karl Schügerl on the occasion of his 90th birthday. Eng Life Sci 17(8):833–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lebedev N, Strycharz-Glaven SM, Tender LM (2014) High resolution AFM and single-cell resonance Raman spectroscopy of Geobacter sulfurreducens biofilms early in growth. Front Energy Res 2:34

    Article  Google Scholar 

  49. Le DTL, Guérardel Y, Loubiere P, Mercier-Bonin M, Dague E (2011) Measuring kinetic dissociation/association constants between Lactococcus lactis bacteria and mucins using living cell probes. Biophys J 101(11):2843–2853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Beaussart A, El-Kirat-Chatel S, Sullan RMA, Alsteens D, Herman P, Derclaye S, Dufrêne YF (2014) Quantifying the forces guiding microbial cell adhesion using single-cell force spectroscopy. Nat Protoc 9(5):1049

    Article  CAS  PubMed  Google Scholar 

  51. Caniglia G, Kranz C (2020) Scanning electrochemical microscopy and its potential for studying biofilms and antimicrobial coatings. Anal Bioanal Chem:1–16

    Google Scholar 

  52. Li M, Xi N, Wang Y, Liu L (2019) Advances in atomic force microscopy for single-cell analysis. Nano Res 12(4):703–718

    Article  CAS  Google Scholar 

  53. McAllister EW, Carey LC, Brady PG, Heller R, Kovacs SG (1993) The role of polymeric surface smoothness of biliary stents in bacterial adherence, biofilm deposition, and stent occlusion. Gastrointest Endosc 39(3):422–425

    Article  CAS  PubMed  Google Scholar 

  54. Hyde FW, Alberg M, Smith K (1997) Comparison of fluorinated polymers against stainless steel, glass and polypropylene in microbial biofilm adherence and removal. J Ind Microbiol Biotechnol 19(2):142–149

    Article  CAS  PubMed  Google Scholar 

  55. Lin J, Jiang F, Wen J, Lv W, Porteous N, Deng Y, Sun Y (2015) Fluorinated and un-fluorinated N-halamines as antimicrobial and biofilm-controlling additives for polymers. Polymer 68:92–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Beech IB, Smith JR, Steele AA, Penegar I, Campbell SA (2002) The use of atomic force microscopy for studying interactions of bacterial biofilms with surfaces. Colloids Surf B: Biointerfaces 23(2–3):231–247

    Article  CAS  Google Scholar 

  57. Emerson RJ, Camesano TA (2004) Nanoscale investigation of pathogenic microbial adhesion to a biomaterial. Appl Environ Microbiol 70(10):6012–6022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lorite GS, Rodrigues CM, De Souza AA, Kranz C, Mizaikoff B, Cotta MA (2011) The role of conditioning film formation and surface chemical changes on Xylella fastidiosa adhesion and biofilm evolution. J Colloid Interface Sci 359(1):289–295

    Article  CAS  PubMed  Google Scholar 

  59. Lau PC, Dutcher JR, Beveridge TJ, Lam JS (2009) Absolute quantitation of bacterial biofilm adhesion and viscoelasticity by microbead force spectroscopy. Biophys J 96(7):2935–2948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shen Y, Huang C, Monroy GL, Janjaroen D, Derlon N, Lin J et al (2016) Response of simulated drinking water biofilm mechanical and structural properties to long-term disinfectant exposure. Environ Sci Technol 50(4):1779–1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zeng G, Vad BS, Dueholm MS, Christiansen G, Nilsson M, Tolker-Nielsen T et al (2015) Functional bacterial amyloid increases pseudomonas biofilm hydrophobicity and stiffness. Front Microbiol 6:1099

    Article  PubMed  PubMed Central  Google Scholar 

  62. Allen A, Habimana O, Casey E (2018) The effects of extrinsic factors on the structural and mechanical properties of Pseudomonas fluorescens biofilms: a combined study of nutrient concentrations and shear conditions. Colloids Surf B: Biointerfaces 165:127–134

    Article  CAS  PubMed  Google Scholar 

  63. Powell LC, Hilal N, Wright CJ (2017) Atomic force microscopy study of the biofouling and mechanical properties of virgin and industrially fouled reverse osmosis membranes. Desalination 404:313–321

    Article  CAS  Google Scholar 

  64. Dazzi A, Prazeres R, Glotin F, Ortega JM (2005) Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor. Opt Lett 30(18):2388–2390

    Article  CAS  PubMed  Google Scholar 

  65. Dazzi A, Prater CB, Hu Q, Chase DB, Rabolt JF, Marcott C (2012) AFM–IR: combining atomic force microscopy and infrared spectroscopy for nanoscale chemical characterization. Appl Spectrosc 66(12):1365–1384

    Article  CAS  PubMed  Google Scholar 

  66. Dazzi A, Prater CB (2017) AFM-IR: technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chem Rev 117(7):5146–5173

    Article  CAS  PubMed  Google Scholar 

  67. Fu W, Zhang W (2017) Hybrid AFM for nanoscale physicochemical characterization: recent development and emerging applications. Small 13(11):1603525

    Article  CAS  Google Scholar 

  68. Barlow DE, Biffinger JC, Cockrell-Zugell AL, Lo M, Kjoller K, Cook D et al (2016) The importance of correcting for variable probe–sample interactions in AFM-IR spectroscopy: AFM-IR of dried bacteria on a polyurethane film. Analyst 141(16):4848–4854

    Article  CAS  PubMed  Google Scholar 

  69. Huang Y, Chakraborty S, Liang H (2020) Methods to probe the formation of biofilms: applications in foods and related surfaces. Anal Methods 12(4):416–432

    Article  CAS  Google Scholar 

  70. Zhang W, Yeo BS, Schmid T, Zenobi R (2007) Single molecule tip-enhanced Raman spectroscopy with silver tips. J Phys Chem C 111(4):1733–1738

    Article  CAS  Google Scholar 

  71. Ding SY, Zhang XM, You EM, Ren B, Tian ZQ (2006) Surface-enhanced Raman spectroscopy: general introduction. Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, pp 1–42

    Google Scholar 

  72. Deckert-Gaudig T, Deckert V (2010) Tip-enhanced Raman scattering (TERS) and high-resolution bio nano-analysis—a comparison. Phys Chem Chem Phys 12(38):12040–12049

    Article  CAS  PubMed  Google Scholar 

  73. Kumar N, Mignuzzi S, Su W, Roy D (2015) Tip-enhanced Raman spectroscopy: principles and applications. EPJ Tech Instrument 2(1):9

    Article  Google Scholar 

  74. Ivleva NP, Kubryk P, Niessner R (2017) Raman microspectroscopy, surface-enhanced Raman scattering microspectroscopy, and stable-isotope Raman microspectroscopy for biofilm characterization. Anal Bioanal Chem 409(18):4353–4375

    Article  CAS  PubMed  Google Scholar 

  75. Janganan TK, Mullin N, Tzokov SB, Stringer S, Fagan RP, Hobbs JK et al (2016) Characterization of the spore surface and exosporium proteins of clostridium sporogenes; implications for clostridium botulinum group I strains. Food Microbiol 59:205–212

    Article  CAS  PubMed  Google Scholar 

  76. Gonçalves S, Silva PM, Felício MR, De Medeiros LN, Kurtenbach E, Santos NC (2017) Psd1 effects on Candida albicans planktonic cells and biofilms. Front Cell Infect Microbiol 7:249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Batmanghelich F, Li L, Seo Y (2017) Influence of multispecies biofilms of Pseudomonas aeruginosa and Desulfovibrio vulgaris on the corrosion of cast iron. Corros Sci 121:94–104

    Article  CAS  Google Scholar 

  78. Singh VK, Mishra A, Jha B (2017) Anti-quorum sensing and anti-biofilm activity of Delftia tsuruhatensis extract by attenuating the quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa. Front Cell Infect Microbiol 7:337

    Article  PubMed  CAS  Google Scholar 

  79. Baidamshina DR, Trizna EY, Holyavka MG, Bogachev MI, Artyukhov VG, Akhatova FS et al (2017) Targeting microbial biofilms using Ficin, a nonspecific plant protease. Sci Rep 7:46068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang J, Chen C, Chen J, Zhou S, Zhao Y, Xu M, Xu H (2020) Dual mode of anti-biofilm action of G3 against Streptococcus mutans. ACS Appl Mater Interf

    Google Scholar 

  81. Liu BH, Yu LC (2017) In-situ, time-lapse study of extracellular polymeric substance discharge in Streptococcus mutans biofilm. Colloids Surf B: Biointerfaces 150:98–105

    Article  CAS  PubMed  Google Scholar 

  82. Souza ME, Lopes LQS, Bonez PC, Gündel A, Martinez DST, Sagrillo MR et al (2017) Melaleuca alternifolia nanoparticles against Candida species biofilms. Microb Pathog 104:125–132

    Article  CAS  PubMed  Google Scholar 

  83. Birarda G, Delneri A, Lagatolla C, Parisse P, Cescutti P, Vaccari L, Rizzo R (2019) Multi-technique microscopy investigation on bacterial biofilm matrices: a study on Klebsiella pneumoniae clinical strains. Anal Bioanal Chem 411(27):7315–7325

    Article  CAS  PubMed  Google Scholar 

  84. Bellich B, Distefano M, Syrgiannis Z, Bosi S, Guida F, Rizzo R et al (2019) The polysaccharide extracted from the biofilm of Burkholderia multivorans strain C1576 binds hydrophobic species and exhibits a compact 3D-structure. Int J Biol Macromol 136:944–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Peng N, Cai P, Mortimer M, Wu Y, Gao C, Huang Q (2020) The exopolysaccharide–eDNA interaction modulates 3D architecture of Bacillus subtilis biofilm. BMC Microbiol 20:1–12

    Article  CAS  Google Scholar 

  86. Wang JH, Yang CY, Fang ST, Lu J, Quan CS (2016) Inhibition of biofilm in Bacillus amyloliquefaciens Q-426 by diketopiperazines. World J Microbiol Biotechnol 32(9):143

    Article  PubMed  CAS  Google Scholar 

  87. Barlow DE, Biffinger JC, Estrella L, Lu Q, Hung CS, Nadeau LJ et al (2020) Edge-localized biodeterioration and secondary microplastic formation by Papiliotrema laurentii unsaturated biofilm cells on polyurethane films. Langmuir 36(6):1596–1607

    Article  CAS  PubMed  Google Scholar 

  88. Kochan K, Nethercott C, Perez-Guaita D, Jiang JH, Peleg AY, Wood BR, Heraud P (2019) Detection of antimicrobial resistance-related changes in biochemical composition of Staphylococcus aureus by means of atomic force microscopy-infrared spectroscopy. Anal Chem 91(24):15397–15403

    Article  CAS  PubMed  Google Scholar 

  89. Schmid T, Messmer A, Yeo BS, Zhang W, Zenobi R (2008) Towards chemical analysis of nanostructures in biofilms II: tip-enhanced Raman spectroscopy of alginates. Anal Bioanal Chem 391(5):1907–1916

    Article  CAS  PubMed  Google Scholar 

  90. Schmid T, Sebesta A, Stadler J, Opilik L, Balabin RM, Zenobi R (2010) Tip-enhanced Raman spectroscopy and related techniques in studies of biological materials. In: Synthesis and photonics of nanoscale materials VII, vol 7586. International Society for Optics and Photonics, p 758603

    Google Scholar 

  91. Deng X, Xiong F, Li X, Xiang B, Li Z, Wu X et al (2018) Application of atomic force microscopy in cancer research. J Nanobiotechnol 16(1):102

    Article  CAS  Google Scholar 

  92. Huang Q, Wu H, Cai P, Fein JB, Chen W (2015) Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles. Sci Rep 5:16857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Luís AT, Hlúbiková D, Vaché V, Choquet P, Hoffmann L, Ector L (2017) Atomic force microscopy (AFM) application to diatom study: review and perspectives. J Appl Phycol 29(6):2989–3001

    Article  CAS  Google Scholar 

  94. Kumari C, Chak SK (2019) Study on influential parameters of hybrid AFM processes: a review. Manuf Rev 6:23

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dash, S., Lahiri, D., Nag, M., Das, D., Ray, R.R. (2021). Probing the Surface-Attached In Vitro Microbial Biofilms with Atomic Force (AFM) and Scanning Probe Microscopy (SPM). In: Nag, M., Lahiri, D. (eds) Analytical Methodologies for Biofilm Research. Springer Protocols Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-1378-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1378-8_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-0716-1377-1

  • Online ISBN: 978-1-0716-1378-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics