Skip to main content

A Method to Monitor the Introduction of Posttranscriptional Modifications in tRNAs with NMR Spectroscopy

  • Protocol
  • First Online:
RNA Modifications

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2298))

Abstract

During their biosynthesis, transfer RNAs (tRNAs) are decorated with a large number of posttranscriptional chemical modifications. Methods to directly detect the introduction of posttranscriptional modifications during tRNA maturation are rare and do not provide information on the temporality of modification events. Here, we report a methodology, using NMR as a tool to monitor tRNA maturation in a nondisruptive and continuous fashion in cellular extracts. This method requires the production of substrate tRNA transcripts devoid of modifications and active cell extracts containing the necessary cellular enzymatic activities to modify RNA. The present protocol describes these different aspects of our method and reports the time-resolved NMR monitoring of the yeast tRNAPhe maturation as an example. The NMR-based methodology presented here could be adapted to investigate diverse features in tRNA maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. El Yacoubi B, Bailly M, de Crécy-Lagard V (2012) Biosynthesis and function of posttranscriptional modifications of transfer RNAs. Annu Rev Genet 46:69–95. https://doi.org/10.1146/annurev-genet-110711-155641

    Article  CAS  PubMed  Google Scholar 

  2. Phizicky EM, Hopper AK (2010) tRNA biology charges to the front. Genes Dev 24:1832–1860. https://doi.org/10.1101/gad.1956510

    Article  PubMed Central  PubMed  Google Scholar 

  3. Hopper AK (2013) Transfer RNA post-transcriptional processing, turnover, and subcellular dynamics in the yeast Saccharomyces cerevisiae. Genetics 194:43–67. https://doi.org/10.1534/genetics.112.147470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Barraud P, Tisné C (2019) To be or not to be modified: miscellaneous aspects influencing nucleotide modifications in tRNAs. IUBMB Life 71:1126–1140. https://doi.org/10.1002/iub.2041

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Boccaletto P, Machnicka MA, Purta E, Piatkowski P, Baginski B, Wirecki TK, de Crécy-Lagard V, Ross R, Limbach PA, Kotter A, Helm M, Bujnicki JM (2018) MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res 46:D303–D307. https://doi.org/10.1093/nar/gkx1030

    Article  CAS  PubMed  Google Scholar 

  6. Helm M, Alfonzo JD (2014) Posttranscriptional RNA modifications: playing metabolic games in a cell’s chemical Legoland. Chem Biol 21:174–185. https://doi.org/10.1016/j.chembiol.2013.10.015

    Article  CAS  PubMed  Google Scholar 

  7. Jackman JE, Alfonzo JD (2013) Transfer RNA modifications: nature’s combinatorial chemistry playground. Wiley Interdiscip Rev RNA 4:35–48. https://doi.org/10.1002/wrna.1144

    Article  CAS  PubMed  Google Scholar 

  8. Machnicka MA, Olchowik A, Grosjean H, Bujnicki JM (2014) Distribution and frequencies of post-transcriptional modifications in tRNAs. RNA Biol 11:1619–1629. https://doi.org/10.4161/15476286.2014.992273

    Article  PubMed  Google Scholar 

  9. Agris PF, Vendeix FAP, Graham WD (2007) tRNA’s wobble decoding of the genome: 40 years of modification. J Mol Biol 366:1–13. https://doi.org/10.1016/j.jmb.2006.11.046

    Article  CAS  PubMed  Google Scholar 

  10. Grosjean H, de Crécy-Lagard V, Marck C (2010) Deciphering synonymous codons in the three domains of life: co-evolution with specific tRNA modification enzymes. FEBS Lett 584:252–264. https://doi.org/10.1016/j.febslet.2009.11.052

    Article  CAS  PubMed  Google Scholar 

  11. Oberbauer V, Schaefer MR (2018) tRNA-derived small RNAs: biogenesis, modification, function and potential impact on human disease development. Genes (Basel) 9:607. https://doi.org/10.3390/genes9120607

    Article  CAS  Google Scholar 

  12. Lyons SM, Fay MM, Ivanov P (2018) The role of RNA modifications in the regulation of tRNA cleavage. FEBS Lett 592:2828–2844. https://doi.org/10.1002/1873-3468.13205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Chan CTY, Pang YLJ, Deng W, Babu IR, Dyavaiah M, Begley TJ, Dedon PC (2012) Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins. Nat Commun 3:937. https://doi.org/10.1038/ncomms1938

    Article  CAS  PubMed  Google Scholar 

  14. Huber SM, Leonardi A, Dedon PC, Begley TJ (2019) The versatile roles of the tRNA epitranscriptome during cellular responses to toxic exposures and environmental stress. Toxics 7:17. https://doi.org/10.3390/toxics7010017

    Article  CAS  PubMed Central  Google Scholar 

  15. Barraud P, Gato A, Heiss M, Catala M, Kellner S, Tisné C (2019) Time-resolved NMR monitoring of tRNA maturation. Nat Commun 10:3373. https://doi.org/10.1038/s41467-019-11356-w

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Farjon J, Boisbouvier J, Schanda P, Pardi A, Simorre J-P, Brutscher B (2009) Longitudinal-relaxation-enhanced NMR experiments for the study of nucleic acids in solution. J Am Chem Soc 131:8571–8577. https://doi.org/10.1021/ja901633y

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Rio DC (2013) Expression and purification of active recombinant T7 RNA polymerase from E. coli. Cold Spring Harb Protoc 2013:pdb.prot078527. https://doi.org/10.1101/pdb.prot078527

    Article  PubMed  Google Scholar 

  18. Dégut C, Monod A, Brachet F, Crépin T, Tisné C (2016) In vitro/in vivo production of tRNA for X-ray studies. Methods Mol Biol 1320:37–57. https://doi.org/10.1007/978-1-4939-2763-0_4

    Article  PubMed  Google Scholar 

  19. Milligan JF, Groebe DR, Witherell GW, Uhlenbeck OC (1987) Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res 15:8783–8798. https://doi.org/10.1093/nar/15.21.8783

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Heinemeyer W, Kleinschmidt JA, Saidowsky J, Escher C, Wolf DH (1991) Proteinase yscE, the yeast proteasome/multicatalytic-multifunctional proteinase: mutants unravel its function in stress induced proteolysis and uncover its necessity for cell survival. EMBO J 10:555–562. https://doi.org/10.1002/j.1460-2075.1991.tb07982.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Achstetter T, Emter O, Ehmann C, Wolf DH (1984) Proteolysis in eukaryotic cells. Identification of multiple proteolytic enzymes in yeast. J Biol Chem 259:13334–13343

    Article  CAS  PubMed  Google Scholar 

  22. Eaton NR (1962) New press for disruption of microorganisms. J Bacteriol 83:1359–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Freund J, Kalbitzer HR (1995) Physiological buffers for NMR spectroscopy. J Biomol NMR 5:321–322. https://doi.org/10.1007/BF00211760

    Article  CAS  PubMed  Google Scholar 

  24. Catala M, Gato A, Tisné C, Barraud P (2020) Preparation of yeast tRNA sample for NMR spectroscopy. Bio-protocol 10:e3646. https://doi.org/10.21769/BioProtoc.3646

    Article  PubMed  PubMed Central  Google Scholar 

  25. Waldron C, Lacroute F (1975) Effect of growth rate on the amounts of ribosomal and transfer ribonucleic acids in yeast. J Bacteriol 122:855–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dong H, Nilsson L, Kurland CG (1996) Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates. J Mol Biol 260:649–663. https://doi.org/10.1006/jmbi.1996.0428

    Article  CAS  PubMed  Google Scholar 

  27. Catala M, Gato A, Tisné C, Barraud P (2020) 1H, 15N chemical shift assignments of the imino groups of yeast tRNAPhe: influence of the post-transcriptional modifications. Biomol NMR Assign 14(2):169–174. https://doi.org/10.1007/s12104-020-09939-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Henri Grosjean for protocols and stimulating discussions about RNA modifications, Sylvie Auxilien (I2BC) for the c13-ABYS-86 yeast strain, Bruno Sargueil for guidance regarding the Eaton press implementation, and Christel Le Bon for ensuring the best performance of the NMR infrastructure at the IBPC. The authors acknowledge access to the biomolecular NMR platform of the IBPC that is supported by the CNRS, the Labex DYNAMO (ANR-11-LABX-0011), the Equipex CACSICE (ANR-11-EQPX-0008), and the Conseil Régional d’Île-de-France (SESAME grant). This work was supported by grant ANR-14-CE09-0012 from the ANR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Barraud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gato, A., Catala, M., Tisné, C., Barraud, P. (2021). A Method to Monitor the Introduction of Posttranscriptional Modifications in tRNAs with NMR Spectroscopy. In: McMahon, M. (eds) RNA Modifications. Methods in Molecular Biology, vol 2298. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1374-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1374-0_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1373-3

  • Online ISBN: 978-1-0716-1374-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics