Skip to main content

Express Arabidopsis Cryptochrome in Sf9 Insect Cells Using the Baculovirus Expression System

  • Protocol
  • First Online:
Plant Photomorphogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2297))

Abstract

The Bac-to-BacĀ® Baculovirus Expression System provides a rapid and efficient method to generate recombinant cryptochrome (CRY) proteins with chromophore flavin (FAD), which showed blue light response in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad M, Cashmore AR (1993) HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366:162ā€“166

    ArticleĀ  CASĀ  Google ScholarĀ 

  2. Lin C, Ahmad M, Chan J et al (1995) CRY2, a second member of the arabidopsis cryptochrome gene family. Plant Physiol 110:1047

    Google ScholarĀ 

  3. Cashmore AR (2003) Cryptochromes:enabling plants and animals to determine circadian time. Cell 114:537ā€“543

    ArticleĀ  CASĀ  Google ScholarĀ 

  4. Partch CL, Sancar A (2005) Cryptochromes and circadian photoreception in animals. Methods Enzymol 393:726ā€“745

    ArticleĀ  CASĀ  Google ScholarĀ 

  5. Guo H, Yang H, Mockler TC et al (1998) Regulation of flowering time by Arabidopsis photoreceptors. Science 279(5355):1360ā€“1363

    ArticleĀ  CASĀ  Google ScholarĀ 

  6. Somers DE, Devlin PF, Kay SA (1998) Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science 282:1488ā€“1490

    ArticleĀ  CASĀ  Google ScholarĀ 

  7. Tsuchida-Mayama T, Sakai T, Hanada A et al (2010) Role of the phytochrome and cryptochrome signaling pathways in hypocotyl phototropism. Plant J 62(4):653ā€“662

    ArticleĀ  CASĀ  Google ScholarĀ 

  8. Lin C, Robertson DE, Ahmad M et al (1995) Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1. Science 269:968ā€“970

    ArticleĀ  CASĀ  Google ScholarĀ 

  9. Malhotra K, Kim ST, Batschauer A et al (1995) Putative blue-light photoreceptors from Arabidopsis thaliana and Sinapis alba with a high degree of sequence homology to DNA photolyase contain the two photolyase cofactors but lack DNA repair activity. Biochemistry 34:6892ā€“6899

    ArticleĀ  CASĀ  Google ScholarĀ 

  10. Banerjee R, Schleicher E, Meier S et al (2007) The signaling state of Arabidopsis cryptochrome 2 contains flavin semiquinone. J Biol Chem 282:14916ā€“14922

    ArticleĀ  CASĀ  Google ScholarĀ 

  11. Bouly JP, Schleicher E, Dionisio-Sese M et al (2007) Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states. J Biol Chem 282:9383ā€“9391

    ArticleĀ  CASĀ  Google ScholarĀ 

  12. Bac-to-BacĀ® Baculovirus Expression System (2010) An efficient site-specific transposition system to generate baculovirus for high-level expression of recombinant proteins. Version F

    Google ScholarĀ 

  13. Liu H, Yu X, Li K et al (2008) Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science 322(5907):1535ā€“1539

    ArticleĀ  CASĀ  Google ScholarĀ 

  14. Li X, Wang QYXH et al (2011) Arabidopsis cryptochrome 2 (CRY2) functions by the photoactivation mechanism distinct from the tryptophan (trp) triad dependent photoreduction. Proc Natl Acad Sci U S A 108(51):20844ā€“20849

    ArticleĀ  CASĀ  Google ScholarĀ 

  15. Gao J, Wang X, Zhang M et al (2015) Trp triad-dependent rapid photoreduction is not required for the function of Arabidopsis CRY1. Proc Natl Acad Sci U S A 112:9135ā€“9140

    ArticleĀ  CASĀ  Google ScholarĀ 

  16. Liu YW, Li X, Ma D et al (2018) CIB1 and CO interact to mediate CRY2 regulation of flowering. EMBO Reports. https://doi.org/10.15252/embr.201845762

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31730009, 31721001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongtao Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, X., Liu, Y., Liu, H. (2021). Express Arabidopsis Cryptochrome in Sf9 Insect Cells Using the Baculovirus Expression System. In: Yin, R., Li, L., Zuo, K. (eds) Plant Photomorphogenesis. Methods in Molecular Biology, vol 2297. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1370-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1370-2_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1369-6

  • Online ISBN: 978-1-0716-1370-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics