Skip to main content

Fatty Acid Composition by Total Acyl Lipid Collision-Induced Dissociation Time-of-Flight (TAL-CID-TOF) Mass Spectrometry

  • Protocol
  • First Online:
Plant Lipids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2295))

Abstract

Total acyl lipid collision-induced dissociation time-of-flight (TAL-CID-TOF) mass spectrometry uses a quadrupole time-of-flight (QTOF) mass spectrometer to rapidly provide a comprehensive fatty acid composition of a biological lipid extract. Samples are infused into a QTOF instrument, operated in negative mode, and the quadrupole is used to transfer all, or a wide mass range of, precursor ions to the collision cell for fragmentation. Time-of-flight-acquired mass spectra provide mass accuracy and resolution sufficient for chemical formula determination of fatty acids in the complex mixture. Considering the limited number of reasonable CHO variants in fatty acids, one can discern acyl anions with the same nominal mass but different chemical formulas. An online application, LipidomeDB Data Calculation Environment, is employed to process the mass spectral output data and match identified fragments to target fragments at a resolution specified by the user. TAL-CID-TOF methodology is a useful discovery or screening tool to identify and compare fatty acid profiles of biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Creelman RA, Mulpuri R (2002) The oxylipin pathway in Arabidopsis. Arabidopsis Book 1:e0012

    Article  Google Scholar 

  2. Buseman CM, Tamura P, Sparks AA et al (2006) Wounding stimulates the accumulation of glycerolipids containing oxophytodienoic acid and dinor-oxophytodienoic acid in Arabidopsis leaves. Plant Physiol 142:28–39

    Article  CAS  Google Scholar 

  3. Kourtchenko O, Andersson MX, Hamberg M et al (2007) Oxo-phytodienoic acid-containing galactolipids in Arabidopsis: jasmonate signaling dependence. Plant Physiol 145:1658–1669

    Article  CAS  Google Scholar 

  4. Chehab EW, Kaspi R, Savchenko T et al (2008) Distinct roles of jasmonates and aldehydes in plant-defense responses. PLoS One 3:e1904

    Article  Google Scholar 

  5. Degenkolbe T, Giavalisco P, Zuther E et al (2012) Differential remodeling of the lipidome during cold acclimation in natural accessions of Arabidopsis thaliana. Plant J 72:972–982

    Article  CAS  Google Scholar 

  6. Lee H, Park WJ (2014) Unsaturated fatty acids, desaturases, and human health. J Med Food 17:189–197

    Article  Google Scholar 

  7. Okazaki Y, Saito K (2014) Roles of lipids as signaling molecules and mitigators during stress response in plants. Plant J 79:584–596

    Article  CAS  Google Scholar 

  8. Vu HS, Shiva S, Roth MR et al (2014) Lipid changes after leaf wounding in Arabidopsis thaliana: expanded lipidomic data form the basis for lipid co-occurrence analysis. Plant J 80:728–743

    Article  CAS  Google Scholar 

  9. Li N, Xu C, Li-Beisson Y et al (2016) Fatty acid and lipid transport in plant cells. Trends Plant Sci 21:145–158

    Article  CAS  Google Scholar 

  10. Martin SA, Brash AR, Murphy RC (2016) The discovery and early structural studies of arachidonic acid. J Lipid Res 57:1126–1132

    Article  CAS  Google Scholar 

  11. Hölzl G, Dörmann P (2019) Chloroplast lipids and their biosynthesis. Annu Rev Plant Biol 70:51–81

    Article  Google Scholar 

  12. de Carvalho CCCR, Caramujo MJ (2018) The various roles of fatty acids. Molecules 23:2583

    Article  Google Scholar 

  13. Matthan NR, Ooi EM, Van Horn L et al (2014) Plasma phospholipid fatty acid biomarkers of dietary fat quality and endogenous metabolism predict coronary heart disease risk: a nested case-control study within the Women’s Health Initiative observational study. J Am Heart Assoc 3:e000764

    Article  Google Scholar 

  14. Philippova M, Resink T, Erne P et al (2014) Oxidised phospholipids as biomarkers in human disease. Swiss Med Wkly 144:w14037

    PubMed  Google Scholar 

  15. Ma W, Wu JH, Wang Q et al (2015) Prospective association of fatty acids in the de novo lipogenesis pathway with risk of type 2 diabetes: the Cardiovascular Health Study. Am J Clin Nutr 101:153–163

    Article  CAS  Google Scholar 

  16. Zheng JS, Sharp SJ, Imamura F et al (2017) Association between plasma phospholipid saturated fatty acids and metabolic markers of lipid, hepatic, inflammation and glycaemic pathways in eight European countries: a cross-sectional analysis in the EPIC-InterAct study. BMC Med 15:203

    Article  Google Scholar 

  17. Bandu R, Mok HJ, Kim KP (2018) Phospholipids as cancer biomarkers: mass spectrometry-based analysis. Mass Spectrom Rev 37:107–138

    Article  CAS  Google Scholar 

  18. Jackson KH, Harris WS (2018) Blood fatty acid profiles: new biomarkers for cardiometabolic disease risk. Curr Atheroscler Rep 20:22

    Article  Google Scholar 

  19. Pakiet A, Kobiela J, Stepnowski P et al (2019) Changes in lipids composition and metabolism in colorectal cancer: a review. Lipids Health Dis 18:29

    Article  Google Scholar 

  20. Weber H, Vick BA, Farmer EE (1997) Dinor-oxo-phytodienoic acid: a new hexadecanoid signal in the jasmonate family. Proc Natl Acad Sci U S A 94:10473–10478

    Article  CAS  Google Scholar 

  21. Vollenweider S, Weber H, Stolz S et al (2000) Fatty acid ketodienes and fatty acid ketotrienes: Michael addition acceptors that accumulate in wounded and diseased Arabidopsis leaves. Plant J 24:467–476

    Article  CAS  Google Scholar 

  22. Mueller MJ, Mène-Saffrané L, Grun C et al (2006) Oxylipin analysis methods. Plant J 45:472–489

    Article  CAS  Google Scholar 

  23. Schulze B, Lauchli R, Sonwa MM et al (2006) Profiling of structurally labile oxylipins in plants by in situ derivatization with pentafluorobenzyl hydroxylamine. Anal Biochem 348:269–283

    Article  CAS  Google Scholar 

  24. Ibrahim A, Schütz AL, Galano JM et al (2011) The alphabet of galactolipids in Arabidopsis thaliana. Front Plant Sci 2:95

    Article  CAS  Google Scholar 

  25. Li-Beisson Y, Shorrosh B, Beisson F et al (2013) Acyl-lipid metabolism. Arabidopsis Book 11:e0161

    Article  Google Scholar 

  26. Esch SW, Tamura P, Sparks AA et al (2007) Rapid characterization of the fatty acyl composition of complex lipids by collision-induced dissociation time-of-flight mass spectrometry. J Lipid Res 48:235–241

    Article  CAS  Google Scholar 

  27. Zhou Z, Marepally SR, Nune DS et al (2011) LipidomeDB data calculation environment: online processing of direct-infusion mass spectral data for lipid profiles. Lipids 46:879–884

    Article  CAS  Google Scholar 

  28. Fruehan C, Johnson D, Welti R (2018) LipidomeDB data calculation environment has been updated to process direct-infusion multiple reaction monitoring data. Lipids 53:1019–1020

    Article  CAS  Google Scholar 

  29. Murphy RC (1993) Mass spectrometry of lipids. In: Handbook of lipid research, vol 7. Plenum Press, New York, NY, pp 223–226

    Google Scholar 

  30. Guella G, Frassanito R, Mancini I (2003) A new solution for an old problem: the regiochemical distribution of the acyl chains in galactolipids can be established by electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 17:1982–1994

    Article  CAS  Google Scholar 

  31. Comfurius P, Zwaal RF (1977) The enzymatic synthesis of phosphatidylserine and purification by CM-cellulose column chromatography. Biochim Biophys Acta 488:36–42

    Article  CAS  Google Scholar 

  32. Ames BN (1966) Assay of inorganic phosphate, total phosphate and phosphatases. In: Neufeld E, Ginsburg V (eds) Methods in enzymology: complex carbohydrates, vol VIII. Academic, New York, NY, pp 115–118

    Chapter  Google Scholar 

  33. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  Google Scholar 

  34. Welti R, Li W, Li M et al (2002) Profiling membrane lipids in plant stress responses. Role of phospholipase Dα in freezing-induced lipid changes in Arabidopsis. J Biol Chem 277:31994–32002

    Article  CAS  Google Scholar 

  35. Shiva S, Enninful R, Roth MR et al (2018) An efficient modified method for plant leaf lipid extraction results in improved recovery of phosphatidic acid. Plant Methods 14:14

    Article  Google Scholar 

  36. Shiva S, Vu HS, Roth MR et al (2013) Lipidomic analysis of plant membrane lipids by direct infusion tandem mass spectrometry. In: Munnik T, Heilmann I (eds) Plant signaling protocols. Methods in molecular biology, vol 1009. Humana Press, Totowa, NJ, pp 79–91

    Chapter  Google Scholar 

  37. Hao C, March RE, Croley TR et al (2001) Electrospray ionization tandem mass spectrometric study of salt cluster ions. Part 1—investigations of alkali metal chloride and sodium salt cluster ions. J Mass Spectrom 36:79–96

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mary Roth for sharing her expertise in sample preparation methods. This work was supported by the USDA National Institute of Food and Agriculture, Hatch/Multi-State project 1013013, National Science Foundation MCB 1413036, and the Chemical Biology of Infectious Disease, Center of Biomedical Research Excellence (COBRE) of National Institute of Health (P20GM113117). Instrument acquisition and maintenance at KLRC was supported by National Science Foundation (EPS 0236913, DBI 0521587, DBI 1228622, DBI 1726527), K-IDeA Networks of Biomedical Research Excellence (INBRE) of National Institute of Health (P20GM103418), and Kansas State University. Contribution no. 20-230-B from the Kansas Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth Welti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tamura, P., Fruehan, C., Johnson, D.K., Hinkes, P., Williams, T.D., Welti, R. (2021). Fatty Acid Composition by Total Acyl Lipid Collision-Induced Dissociation Time-of-Flight (TAL-CID-TOF) Mass Spectrometry. In: Bartels, D., Dörmann, P. (eds) Plant Lipids. Methods in Molecular Biology, vol 2295. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1362-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1362-7_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1361-0

  • Online ISBN: 978-1-0716-1362-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics