Skip to main content

Collection and Analysis of Phloem Lipids

  • Protocol
  • First Online:
Plant Lipids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2295))

Abstract

The plant phloem is a long-distance conduit for the transport of assimilates but also of mobile developmental and stress signals. These signals can be sugars, metabolites, amino acids, peptides, proteins, microRNA, or mRNA. Yet small lipophilic molecules such as oxylipins and, more recently, phospholipids have emerged as possible long-distance signals as well. Analysis of phloem (phospho)lipids, however, requires enrichment, purification, and sensitive analysis. This chapter describes the EDTA-facilitated approach of phloem exudate collection, phase partitioning against chloroform–methanol for lipid separation and enrichment, and analysis/identification of phloem lipids using LC-MS with multiplexed collision induced dissociation (CID).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lucas WJ, Groover A, Lichtenberger R, Furuta K, Yadav SR, Helariutta Y, He XQ, Fukuda H, Kang J, Brady SM, Patrick JW, Sperry J, Yoshida A, López-Millán AF, Grusak MA, Kachroo P (2013) The plant vascular system: evolution, development and functions. J Integr Plant Biol 55:294–388. https://doi.org/10.1111/jipb.12041

    Article  CAS  PubMed  Google Scholar 

  2. Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033. https://doi.org/10.1126/science.1141752

    Article  CAS  PubMed  Google Scholar 

  3. Nakamura Y, Andrés F, Kanehara K, Liu YC, Dörmann P, Coupland G (2014) Arabidopsis florigen FT binds to diurnally oscillating phospholipids that accelerate flowering. Nat Commun 5:3553. https://doi.org/10.1038/ncomms4553

    Article  CAS  PubMed  Google Scholar 

  4. Guelette BS, Benning UF, Hoffmann-Benning S (2012) Identification of lipids and lipid-binding proteins in phloem exudates from Arabidopsis thaliana. J Exp Bot 63:3603–3616. https://doi.org/10.1093/jxb/ers028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Benning UF, Tamot B, Guelette BS, Hoffmann-Benning S (2012) New aspects of phloem-mediated long-distance lipid signaling in plants. Front Plant Sci 3:53. https://doi.org/10.3389/fpls.2012.00053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zheng SX, Xiao S, Chye ML (2012) The gene encoding Arabidopsis acyl-CoA-binding protein 3 is pathogen inducible and subject to circadian regulation. J Exp Bot 63:2985–3000. https://doi.org/10.1093/jxb/ers009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Koenig AM, Benning C, Hoffmann-Benning S (2020) Lipid trafficking and signaling in plants. In: Ntambi J (ed) Invited review for “lipid signaling and metabolism”. Elsevier, Amsterdam

    Google Scholar 

  8. Marentes EM, Grusak MA (1998) Mass determination of low-molecular-weight proteins in phloem sap using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Exp Bot 49:903–911

    CAS  Google Scholar 

  9. Giavalisco P, Kapitza K, Kolasa A, Buhtz A, Kehr J (2006) Towards the proteome of Brassica napus phloem sap. Proteomics 6:896–909. https://doi.org/10.1002/pmic.200500155

    Article  CAS  PubMed  Google Scholar 

  10. Zhang C, Yu X, Ayre BG, Turgeon (2012) The origin and composition of cucurbit “phloem” exudate. Plant Physiol 158:1873–1882. https://doi.org/10.1104/pp.112.194431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tetyuk O, Benning UF, Hoffmann-Benning S (2013) Collection and analysis of Arabidopsis phloem exudates using the EDTA-facilitated method. J Vis Exp 80:e51111. https://doi.org/10.3791/51111

    Article  CAS  Google Scholar 

  12. Gaupels F, Buhtz A, Knauer T, Deshmukh S, Waller F, van Bel AJ, Kogel KH, Kehr J (2008) Adaptation of aphid stylectomy for analyses of proteins and mRNAs in barley phloem sap. J Exp Bot 59:3297–3306. https://doi.org/10.1093/jxb/ern181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Behmer ST, Grebenok RJ, Douglas AE (2011) Plant sterols and host plant suitability for a phloem-feeding insect. Funct Ecol 25:484–491. https://doi.org/10.1111/j.1365-2435.2010.01810.x

    Article  Google Scholar 

  14. King RW, Zeevaart JAD (1974) Enhancement of phloem exudation from cut petioles by chelating agents. Plant Physiol 53:96–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Champigny MJ, Isaacs M, Carella P, Faubert J, Fobert PR, Cameron RK (2013) Long distance movement of DIR1 and investigation of the role of DIR1-like during systemic acquired resistance in Arabidopsis. Front Plant Sci 4:230. https://doi.org/10.3389/fpls.2013.00230

    Article  PubMed  PubMed Central  Google Scholar 

  16. Narayanan S, Prasad PVV, Welti R (2018) Alterations in wheat pollen lipidome during high day and night temperature stress. Plant Cell Environ 41:1749–1761. https://doi.org/10.1111/pce.13156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Poliner E, Panchy N, Newton L, Wu G, Lapinsky A, Bullard B, Zienkiewicz A, Benning C, Shiu SH, Farré EM (2015) Transcriptional coordination of physiological responses in Nannochloropsis oceanica CCMP1779 under light/dark cycles. Plant J 83:1097–1113. https://doi.org/10.1111/tpj.12944

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by NSF grant #1841251. Figures 1a, 2, and 3b are modified from [4, 11].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Hoffmann-Benning .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hoffmann-Benning, S. (2021). Collection and Analysis of Phloem Lipids. In: Bartels, D., Dörmann, P. (eds) Plant Lipids. Methods in Molecular Biology, vol 2295. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1362-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1362-7_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1361-0

  • Online ISBN: 978-1-0716-1362-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics