Skip to main content

Analyzing the Role of Proteases in Breast Cancer Progression and Metastasis Using Primary Cells from Transgenic Oncomice

  • Protocol
  • First Online:
Metastasis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2294))

Abstract

It is becoming increasingly evident that progression and metastasis of solid cancers is driven by the interaction of oncogene-transformed cancer cells and non-malignant host cells in the tumor stroma. In this process, the immune system contributes a complex set of highly important pro- and antitumor effects, which are not readily recapitulated by commonly used xenograft cancer models in immunodeficient mice.

Therefore, we provide protocols for isolation of primary tumor cells from the MMTV-PymT mouse model for metastasizing breast cancer and their resubmission to congenic immunocompetent mice by orthotopic transplantation into the mammary gland or different routes of injection to induce organ-specific experimental metastasis, including intravenous, intracardiac, and caudal artery injection of tumor cells. Moreover, we describe protocols for sensitive detection and quantification of the metastatic burden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Puente XS, Sanchez LM, Overall CM, Lopez-Otin C (2003) Human and mouse proteases: a comparative genomic approach. Nat Rev Genet 4:544–558

    Article  CAS  Google Scholar 

  2. Turk V, Stoka V, Vasiljeva O et al (2012) Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim Biophys Acta 1824:68–88

    Article  CAS  Google Scholar 

  3. Reinheckel T, Peters C, Krüger A et al (2012) Differential impact of cysteine Cathepsins on genetic mouse models of De novo carcinogenesis: Cathepsin B as emerging therapeutic target. Front Pharmacol 3

    Google Scholar 

  4. Vidak E, Javoršek U, Vizovišek M, Turk B (2019) Cysteine Cathepsins and their extracellular roles: shaping the microenvironment. Cell 8:264

    Article  CAS  Google Scholar 

  5. Bengsch F, Buck A, Günther SC et al (2013) Cell type-dependent pathogenic functions of overexpressed human cathepsin B in murine breast cancer progression. Oncogene 33:4474–4484. https://doi.org/10.1038/onc.2013.395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dennemärker J, Lohmüller T, Mayerle J et al (2010) Deficiency for the cysteine protease cathepsin L promotes tumor progression in mouse epidermis. Oncogene 29:1611–1621

    Article  Google Scholar 

  7. Sevenich L, Schurigt U, Sachse K et al (2010) Synergistic antitumor effects of combined cathepsin B and cathepsin Z deficiencies on breast cancer progression and metastasis in mice. Proc Natl Acad Sci U S A 107:2497–2502

    Article  CAS  Google Scholar 

  8. Vasiljeva O, Papazoglou A, Krüger A et al (2006) Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Res 66:5242–5250

    Article  CAS  Google Scholar 

  9. Gocheva V, Zeng W, Ke D et al (2006) Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes Dev 20:543–556

    Article  CAS  Google Scholar 

  10. Vasiljeva O, Korovin M, Gajda M et al (2008) Reduced tumour cell proliferation and delayed development of high-grade mammary carcinomas in cathepsin B-deficient mice. Oncogene 27:4191–4199

    Article  CAS  Google Scholar 

  11. Sevenich L, Werner F, Gajda M et al (2011) Transgenic expression of human cathepsin B promotes progression and metastasis of polyoma-middle-T-induced breast cancer in mice. Oncogene 30:54–64

    Article  CAS  Google Scholar 

  12. Sevenich L, Bowman RL, Mason SD et al (2014) Analysis of tumour- and stroma-supplied proteolytic networks reveals a brain-metastasis-promoting role for cathepsin S. Nat Cell Biol 16:876–888

    Article  CAS  Google Scholar 

  13. Tholen M, Wolanski J, Stolze B et al (2015) Stress-resistant translation of Cathepsin L mRNA in breast cancer progression. J Biol Chem 290:15758–15769

    Article  CAS  Google Scholar 

  14. Ziegler PK, Bollrath J, Pallangyo CK et al (2018) Mitophagy in intestinal epithelial cells triggers adaptive immunity during tumorigenesis. Cell 174:88–101

    Article  CAS  Google Scholar 

  15. Guy CT, Cardiff RD, Muller WJ (1992) Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol 12:954–961

    Article  CAS  Google Scholar 

  16. Elston CW, Ellis IO (2002) Pathological prognostic factors in breast cancer. I. the value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 41:154–161

    Article  CAS  Google Scholar 

  17. Almholt K, Lund LR, Rygaard J et al (2005) Reduced metastasis of transgenic mammary cancer in urokinase-deficient mice. Int J Cancer 113:525–532

    Article  CAS  Google Scholar 

  18. Hüsemann Y, Geigl JB, Schubert F et al (2008) Systemic spread is an early step in breast cancer. Cancer Cell 13:58–68

    Article  Google Scholar 

  19. Kang Y, Siegel PM, Shu W et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549

    Article  CAS  Google Scholar 

  20. Bos PD, Zhang XH-F, Nadal C et al (2009) Genes that mediate breast cancer metastasis to the brain. Nature 459:1005–1009

    Article  CAS  Google Scholar 

  21. Kuchimaru T, Kataoka N, Nakagawa K et al (2018) A reliable murine model of bone metastasis by injecting cancer cells through caudal arteries. Nat Commun 9:2981

    Article  Google Scholar 

  22. Bowman RL, Klemm F, Akkari L et al (2016) Macrophage ontogeny underlies differences in tumor-specific education in brain malignancies. Cell Rep 17:2445–2459

    Article  CAS  Google Scholar 

  23. Chae WH, Niesel K, Schulz M et al (2019) Evaluating magnetic resonance spectroscopy as a tool for monitoring therapeutic response of whole brain radiotherapy in a mouse model for breast-to-brain metastasis. Front Oncol 9:1324

    Article  Google Scholar 

  24. Lin EY, Nguyen V, Russell RG, Pollard JW (2001) Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193:727–740

    Article  CAS  Google Scholar 

  25. Shree T, Olson OC, Elie BT et al (2011) Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes Dev 25:2465–2479

    Article  CAS  Google Scholar 

  26. Qian B-Z, Li J, Zhang H et al (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475:222–225

    Article  CAS  Google Scholar 

  27. Guerin MV, Finisguerra V, Van den Eynde BJ et al (2020) Preclinical murine tumor models: a structural and functional perspective. elife 9:e50740

    Article  CAS  Google Scholar 

  28. Walsh NC, Kenney LL, Jangalwe S et al (2017) Humanized mouse models of clinical disease. Annu Rev Pathol Mech Dis 12:187–215

    Article  CAS  Google Scholar 

  29. Tu W, Zheng J (2016) Application of humanized mice in immunological research. Methods Mol Biol 1371:157–176

    Article  CAS  Google Scholar 

  30. Hillebrand LE, Wickberg SM, Gomez-Auli A et al (2019) MMP14 empowers tumor-initiating breast cancer cells under hypoxic nutrient-depleted conditions. FASEB J 33:4124–4140

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Grant Support: TR is supported by the Deutsche Forschungsgemeinschaft (DFG) SFB 850 subproject B7,  GRK 2606 “ProtPath” and the German Cancer Consortium (DKTK) programs Exploitation of Oncogenic Mechanisms project L627 and Radiation Oncology and Imaging project “eRadioImage”. LS is supported by the Deutsche Krebshilfe Max Eder Junior Group Leader Program (70111752) and the Deutsche Forschungsgemeinschaft SPP2084 μbone.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Reinheckel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vasiljeva, O., Sevenich, L., Reinheckel, T. (2021). Analyzing the Role of Proteases in Breast Cancer Progression and Metastasis Using Primary Cells from Transgenic Oncomice. In: Stein, U.S. (eds) Metastasis. Methods in Molecular Biology, vol 2294. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1350-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1350-4_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1349-8

  • Online ISBN: 978-1-0716-1350-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics