Skip to main content

Determination of the Rab27–Effector Binding Affinity Using a High-Throughput FRET-Based Assay

  • Protocol
  • First Online:
Rab GTPases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2293))

  • 828 Accesses

Abstract

Thus far, two Rab27 isoforms (Rab27a and Rab27b) have been identified that interact with their eleven downstream effectors proteins, preferentially in their GTP-bound state. In recent years, a number of studies has suggested roles for Rab27–effector protein interactions in the development of cancer cell invasion and metastasis, and immune and inflammatory responses. Here we develop an in vitro fluorescence resonance energy transfer (FRET)-based protein–protein interaction assay to report Rab27 protein interactions with their effectors. We particularly focus on determining the interaction of mouse (m) Synaptotagmin-like protein (Slp)1 and mSlp2 effector proteins with human (h)Rab27. Green fluorescent protein (GFP)-N-terminus Rab27 binding domains (m-Slp1 and m-Slp2) recombinant proteins were used as donor fluorophores, whereas mCherry-hRab27a/b recombinant proteins were used as acceptor fluorophores. The conditions of this assay were validated and optimized, and the specificity of the assay was confirmed. Accordingly, this assay can be used to assess and identify key determinants and/or candidate inhibitors of Rab27–effector interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Izumi T (2007) Physiological roles of Rab27 effectors in regulated exocytosis. Endocr J 54:649–657

    Article  CAS  Google Scholar 

  2. Fukuda M (2013) Rab27 effectors, pleiotropic regulators in secretory pathways. Traffic 14:949–963. https://doi.org/10.1111/tra.12083

    Article  PubMed  CAS  Google Scholar 

  3. Itzen A, Goody RS (2008) Key determinants of Rab specificity. Structure 16:1437–1439. https://doi.org/10.1016/j.str.2008.09.002

    Article  PubMed  CAS  Google Scholar 

  4. Izumi T, Gomi H, Kasai K, Mizutani S, Torii S (2003) The roles of Rab27 and its effectors in the regulated secretory pathways. Cell Struct Funct 28:465–474

    Article  CAS  Google Scholar 

  5. Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10:513–525. https://doi.org/10.1038/nrm2728

    Article  PubMed  CAS  Google Scholar 

  6. Yamaoka M, Ishizaki T, Kimura T (2015) GTP- and GDP-dependent Rab27a effectors in pancreatic beta-cells. Biol Pharm Bull 38:663–668. https://doi.org/10.1248/bpb.b14-00886

    Article  PubMed  CAS  Google Scholar 

  7. Diekmann Y, Seixas E, Gouw M, Tavares-Cadete F, Seabra MC, Pereira-Leal JB (2011) Thousands of Rab GTPases for the cell biologist. PLoS Comput Biol 7:e1002217. https://doi.org/10.1371/journal.pcbi.1002217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Kukimoto-Niino M, Sakamoto A, Kanno E, Hanawa-Suetsugu K, Terada T, Shirouzu M, Fukuda M, Yokoyama S (2008) Structural basis for the exclusive specificity of Slac2-a/melanophilin for the Rab27 GTPases. Structure 16:1478–1490. https://doi.org/10.1016/j.str.2008.07.014

    Article  PubMed  CAS  Google Scholar 

  9. Hendrix A, Maynard D, Pauwels P, Braems G, Denys H, Van den Broecke R, Lambert J, Van Belle S, Cocquyt V, Gespach C, Bracke M, Seabra MC, Gahl WA, De Wever O, Westbroek W (2010) Effect of the secretory small GTPase Rab27B on breast cancer growth, invasion, and metastasis. J Natl Cancer Inst 102:866–880. https://doi.org/10.1093/jnci/djq153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Zheng Y, Campbell EC, Lucocq J, Riches A, Powis SJ (2013) Monitoring the Rab27 associated exosome pathway using nanoparticle tracking analysis. Exp Cell Res 319:1706–1713. https://doi.org/10.1016/j.yexcr.2012.10.006

    Article  PubMed  CAS  Google Scholar 

  11. Kajiho H, Kajiho Y, Frittoli E, Confalonieri S, Bertalot G, Viale G, Di Fiore PP, Oldani A, Garre M, Beznoussenko GV, Palamidessi A, Vecchi M, Chavrier P, Perez F, Scita G (2016) RAB2A controls MT1-MMP endocytic and E-cadherin polarized Golgi trafficking to promote invasive breast cancer programs. EMBO Rep 17:1061–1080. https://doi.org/10.15252/embr.201642032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Wang W, Ni Q, Wang H, Zhang S, Zhu H (2014) Prognostic value of Rab27b nuclear expression in gastrointestinal stromal tumors. Dis Markers 2014:942181. https://doi.org/10.1155/2014/942181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Fukuda M (2005) Versatile role of Rab27 in membrane trafficking: focus on the Rab27 effector families. J Biochem 137:9–16. https://doi.org/10.1093/jb/mvi002

    Article  PubMed  CAS  Google Scholar 

  14. Kuroda TS, Fukuda M, Ariga H, Mikoshiba K (2002) The Slp homology domain of synaptotagmin-like proteins 1-4 and Slac2 functions as a novel Rab27A binding domain. J Biol Chem 277:9212–9218. https://doi.org/10.1074/jbc.M112414200

    Article  PubMed  CAS  Google Scholar 

  15. Fukuda M, Mikoshiba K (2001) Synaptotagmin-like protein 1-3: a novel family of C-terminal-type tandem C2 proteins. Biochem Biophys Res Commun 281:1226–1233. https://doi.org/10.1006/bbrc.2001.4512

    Article  PubMed  CAS  Google Scholar 

  16. Fukuda M, Saegusa C, Mikoshiba K (2001) Novel splicing isoforms of synaptotagmin-like proteins 2 and 3: identification of the Slp homology domain. Biochem Biophys Res Commun 283:513–519. https://doi.org/10.1006/bbrc.2001.4803

    Article  PubMed  CAS  Google Scholar 

  17. Kuroda TS, Fukuda M, Ariga H, Mikoshiba K (2002) Synaptotagmin-like protein 5: a novel Rab27A effector with C-terminal tandem C2 domains. Biochem Biophys Res Commun 293:899–906. https://doi.org/10.1016/S0006-291X(02)00320-0

    Article  PubMed  CAS  Google Scholar 

  18. Fukuda M (2002) The C2A domain of synaptotagmin-like protein 3 (Slp3) is an atypical calcium-dependent phospholipid-binding machine: comparison with the C2A domain of synaptotagmin I. Biochem J 366:681–687. https://doi.org/10.1042/bj20020484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Johnson JL, Ramadass M, He J, Brown SJ, Zhang J, Abgaryan L, Biris N, Gavathiotis E, Rosen H, Catz SD (2016) Identification of Nexinhibs, small-molecule inhibitors of neutrophil exocytosis and inflammation. Druggability of the small GTPase Rab27a. J Biol Chem 291:25965–25982. https://doi.org/10.1074/jbc.M116.741884

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Fukuda M (2006) Distinct Rab27A binding affinities of Slp2-a and Slac2-a/melanophilin: hierarchy of Rab27A effectors. Biochem Biophys Res Commun 343:666–674. https://doi.org/10.1016/j.bbrc.2006.03.001

    Article  PubMed  CAS  Google Scholar 

  21. Al-Saad RZ, Kerr I, Hume AN (2020) In vitro fluorescence resonance energy transfer-based assay used to determine the Rab27-effector-binding affinity. Assay Drug Dev Technol 18:180–194. https://doi.org/10.1089/adt.2019.960

    Article  PubMed  CAS  Google Scholar 

  22. Chavas LM, Ihara K, Kawasaki M, Torii S, Uejima T, Kato R, Izumi T, Wakatsuki S (2008) Elucidation of Rab27 recruitment by its effectors: structure of Rab27a bound to Exophilin4/Slp2-a. Structure 16:1468–1477. https://doi.org/10.1016/j.str.2008.07.015

    Article  PubMed  CAS  Google Scholar 

  23. Seabra MC, Ho YK, Anant JS (1995) Deficient geranylgeranylation of Ram/Rab27 in choroideremia. J Biol Chem 270:24420–24427

    Article  CAS  Google Scholar 

  24. Chen D, Guo J, Miki T, Tachibana M, Gahl WA (1997) Molecular cloning and characterization of Rab27a and Rab27b, novel human rab proteins shared by melanocytes and platelets. Biochem Mol Med 60:27–37

    Article  CAS  Google Scholar 

  25. Farnsworth CC, Seabra MC, Ericsson LH, Gelb MH, Glomset JA (1994) Rab geranylgeranyl transferase catalyzes the geranylgeranylation of adjacent cysteines in the small GTPases Rab1A, Rab3A, and Rab5A. Proc Natl Acad Sci U S A 91:11963–11967

    Article  CAS  Google Scholar 

  26. Strom M, Hume AN, Tarafder AK, Barkagianni E, Seabra MC (2002) A family of Rab27-binding proteins. Melanophilin links Rab27a and myosin Va function in melanosome transport. J Biol Chem 277:25423–25430. https://doi.org/10.1074/jbc.M202574200

    Article  PubMed  CAS  Google Scholar 

  27. Bornhorst JA, Falke JJ (2000) Purification of proteins using polyhistidine affinity tags. Methods Enzymol 326:245–254

    Article  CAS  Google Scholar 

  28. Rybin V, Ullrich O, Rubino M, Alexandrov K, Simon I, Seabra MC, Goody R, Zerial M (1996) GTPase activity of Rab5 acts as a timer for endocytic membrane fusion. Nature 383:266–269. https://doi.org/10.1038/383266a0

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Iraqi Ministry of Higher Education and Scientific Research/the Iraqi Cultural Attaché in the UK funded PhD studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghdan Z. Al-Saad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Al-Saad, R.Z., Kerr, I., Hume, A.N. (2021). Determination of the Rab27–Effector Binding Affinity Using a High-Throughput FRET-Based Assay. In: Li, G., Segev, N. (eds) Rab GTPases. Methods in Molecular Biology, vol 2293. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1346-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1346-7_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1345-0

  • Online ISBN: 978-1-0716-1346-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics