Skip to main content

Interaction of Bovine Lymphocytes with Products of Shiga Toxin-Producing Escherichia coli

  • Protocol
  • First Online:
Shiga Toxin-Producing E. coli

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2291))

Abstract

Shiga toxin-producing Escherichia coli (STEC) produce a number of virulence factors that interfere with lymphocyte functions, including mitogen- and antigen-activated proliferation and pro-inflammatory cytokine synthesis. Here we describe how to isolate lymphocyte subsets from bovine peripheral blood as well as methods that we have used to study the effects of STEC products on lymphocyte proliferation and cytokine production. We also describe an assay that allows for the detection of association of a given protein with lymphocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harkins VJ, McAllister DA, Reynolds BC (2020) Shiga-toxin E. coli haemolytic uremic syndrome: review of management and long-term outcome. Curr Pediatr Rep 8:16–25

    Article  Google Scholar 

  2. Newell DG, La Ragione RM (2018) Enterohaemorrhagic and other Shiga toxin-producing Escherichia coli (STEC): where are we now regarding diagnostics and control strategies? Transbound Emerg Dis 65:49–71

    Article  Google Scholar 

  3. Menge C, Wieler LH, Schlapp T et al (1999) Shiga toxin 1 from Escherichia coli blocks activation and proliferation of bovine lymphocyte subpopulations in vitro. Infect Immun 67:2209–2217

    Article  CAS  Google Scholar 

  4. Stamm I, Wuhrer M, Geyer R et al (2002) Bovine lymphocytes express functional receptors for Escherichia coli Shiga toxin 1. Microb Pathog 33:251–264

    Article  CAS  Google Scholar 

  5. Menge C, Blessenohl M, Eisenberg T et al (2004) Bovine ileal intraepithelial lymphocytes represent target cells for Shiga toxin 1 from Escherichia coli. Infect Immun 72:1896–1905

    Article  CAS  Google Scholar 

  6. Hoffman MA, Menge C, Casey TA et al (2006) Bovine immune response to Shiga-toxigenic Escherichia coli O157:H7. Clin Vaccine Immunol 13:1322–1327

    Article  CAS  Google Scholar 

  7. Hu CA, Dougan SK, Winter SV et al (2009) Subtilase cytotoxin cleaves newly synthesized BiP and blocks antibody secretion in B lymphocytes. J Exp Med 206:2429–2440

    Article  CAS  Google Scholar 

  8. Wang H, Paton AW, McColl SR et al (2011) In vivo leukocyte changes induced by Escherichia coli subtilase cytotoxin. Infect Immun 79:1671–1679

    Article  CAS  Google Scholar 

  9. Klapproth JA, Scaletsky IC, McNamara B et al (2000) A large toxin from pathogenic Escherichia coli strains that inhibits lymphocyte activation. Infect Immun 68:2148–2155

    Article  CAS  Google Scholar 

  10. Stevens MP, van Diemen PM, Frankel G et al (2002) Efa1 influences colonization of the bovine intestine by Shiga toxin producing Escherichia coli serotypes O5 and O111. Infect Immun 70:5158–5166

    Article  CAS  Google Scholar 

  11. Abu-Median A, van Diemen PM, Dziva F et al (2006) Functional analysis of lymphostatin homologues in enterohaemorrhagic Escherichia coli. FEMS Microbiol Lett 258:43–49

    Article  CAS  Google Scholar 

  12. Deacon V, Dziva F, van Diemen PM et al (2010) Efa 1/LifA mediates intestinal colonization of calves by enterohaemorrhagic Escherichia coli O26:H- in a manner independent of glycosyltransferase and cysteine protease motifs or effects on type III secretion. Microbiology 156:2527–2536

    Article  CAS  Google Scholar 

  13. Cassady-Cain RL, Blackburn EA, Alsarraf H et al (2016) Biophysical characterization and activity of lymphostatin, a multifunctional virulence factor of attaching & effacing Escherichia coli. J Biol Chem 291:5803–5816

    Article  CAS  Google Scholar 

  14. Cassady-Cain RL, Blackburn EA, Bell CR et al (2017) Inhibition of antigen-specific and nonspecific stimulation of bovine T and B cells by lymphostatin from attaching and effacing Escherichia coli. Infect Immun 85:e00845–e00816

    Article  CAS  Google Scholar 

  15. Cassady-Cain RL, Hope JC, Stevens MP (2018) Direct manipulation of T lymphocytes by proteins of gastrointestinal bacterial pathogens. Infect Immun 86:e00683–e00617

    Article  CAS  Google Scholar 

  16. Bease AG (2019) Mode of action of a novel lymphocyte inhibitory factor of attaching & effacing Escherichia coli. Ph.D. thesis, The University of Edinburgh

    Google Scholar 

  17. Eisen SA, Wedner HJ, Parker CW (1972) Isolation of pure human peripheral blood T-lymphocytes using nylon wool columns. Immunol Commun 1:571–577

    Article  CAS  Google Scholar 

  18. Cory AH, Owen TC, Barltrop JA et al (1991) Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Commun 3:207–212

    Article  CAS  Google Scholar 

  19. Mesulam M (1978) Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. J Histochem Cytochem 26:106–117

    Article  CAS  Google Scholar 

  20. Bally RW, Gribnau TC (1989) Some aspects of the chromogen 3,3′,5,5′-tetramethylbenzidine as hydrogen donor in a horseradish peroxidase assay. J Clin Chem Clin Biochem 27:791–796

    CAS  PubMed  Google Scholar 

  21. Ritz C, Baty F, Streibig JC et al (2015) Dose-response analysis using R. PLoS One 10:e0146021

    Article  Google Scholar 

  22. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  23. Tardieu M, Crchova V, Daguillard F (1975) Immunological activities of rat lymphocytes. III – isolation of differing subpopulations of lymphocytes by two techniques of T cell separation. Ann Immunol (Paris) 126:281–189

    CAS  Google Scholar 

  24. Wohler JE, Barnum SR (2009) Nylon wool purification alters the activation of T cells. Mol Immunol 46:1007–1010

    Article  CAS  Google Scholar 

  25. Campbell SB, Komata T, Kelso A (2000) Differential effects of CD4 and CD8 engagement on the development of cytokine profiles of murine CD4+ and CD8+ T lymphocytes. Immunology 99:394–401

    Article  CAS  Google Scholar 

  26. Milia E, Di Somma MM, Majolini MB et al (1997) Gene activating and proapoptotic potential are independent properties of different CD4 epitopes. Mol Immunol 34:287–296

    Article  CAS  Google Scholar 

  27. Wang Z, Dudhane A, Orlikowsky T et al (1994) CD4 engagement induces Fas antigen-dependent apoptosis of T cells in vivo. Eur J Immunol 24:1549–1552

    Article  CAS  Google Scholar 

  28. Berndt C, Möpps B, Angermüller S et al (1998) CXCR4 and CD4 mediate a rapid CD95-independent cell death in CD4+ T cells. Proc Natl Acad U S A 95:12556–12561

    Article  CAS  Google Scholar 

  29. Hope JC, Kwong LS, Thom M et al (2005) Development of detection methods for ruminant interleukin (IL)-4. J Immunol Methods 301:114–123

    Article  CAS  Google Scholar 

  30. Hope JC, Kwong LS, Entrican G et al (2002) Development of detection methods for ruminant interleukin (IL)-12. J Immunol Methods 266:117–126

    Article  CAS  Google Scholar 

  31. Hamilton CA, Mahan S, Entrican G et al (2016) Interactions between natural killer cells and dendritic cells favour T helper1-type responses to BCG in calves. Vet Res 47:85

    Article  Google Scholar 

  32. Cubillos-Rojas M, Amair-Pinedo F, Tato I et al (2012) Tris-acetate polyacrylamide gradient gels for the simultaneous electrophoretic analysis of proteins of very high and low molecular mass. In: Kurien B, Scofield R (eds) Protein electrophoresis. Methods in molecular biology (methods and protocols), vol 869. Humana, Totowa, NJ, pp 205–213

    Chapter  Google Scholar 

  33. Davis WC, Brown WC, Hamilton MJ et al (1996) Analysis of monoclonal antibodies specific for the γδ TcR. Vet Immunol Immunopathol 52:275–283

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by a Principal’s Career Development Ph.D. Scholarship from the Roslin Institute and the University of Edinburgh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew G. Bease .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bease, A.G., Cassady-Cain, R.L., Stevens, M.P. (2021). Interaction of Bovine Lymphocytes with Products of Shiga Toxin-Producing Escherichia coli. In: Schüller, S., Bielaszewska, M. (eds) Shiga Toxin-Producing E. coli . Methods in Molecular Biology, vol 2291. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1339-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1339-9_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1338-2

  • Online ISBN: 978-1-0716-1339-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics