Skip to main content

In Vitro Anther Culture for Doubled Haploid Plant Production in Spelt Wheat

  • Protocol
  • First Online:
Doubled Haploid Technology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2287))

Abstract

Doubled haploid (DH) plant production belongs to modern biotechnology methods of plant breeding. The main advantage of DH plant production methods is the development of genetically homozygous lines in one generation, whilst in conventional breeding programmes, the development of homozygous lines requires more generations. The present chapter describes an efficient protocol for DH plant production in spelt wheat genotypes using in vitro anther culture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Raman H, Rahman R, Luckett D, Raman R, Bekes F, Lang L, Bedo Z (2009) Characterisation of genetic variation for aluminium resistance and polyphenol oxidase activity in genebank accessions of spelt wheat. Breed Sci 59:373–381

    Article  CAS  Google Scholar 

  2. Koutroubas SD, Fotiadis S, Damalas CA (2012) Biomass and nitrogen accumulation and translocation in spelt (Triticum spelta) grown in Mediterranean area. Field Crop Res 127:1–8

    Article  Google Scholar 

  3. Arzani A, Ashraf M (2017) Cultivated ancient wheats (Triticum spp.): a potential source of health-beneficial food products. Compr Rev Food Sci Food Safe 16:477–488

    Article  Google Scholar 

  4. Andruszczak S (2018) Spelt wheat grain yield and nutritional value response to sowing rate and nitrogen fertilization. J Anim Plant Sci 28:1476–1484

    CAS  Google Scholar 

  5. Pauk J, Lantos C, Ács K, Gell G, Tömösközi S, Hajdú Búza K, Békés F (2019) Spelt (Triticum spelta L.) in vitro androgenesis breeding for special food quality parameters. In: Al-Khayri JM, Mohan Jain S, Johnson DV (eds) Advances in plant breeding strategies: Cereals. Springer Nature Switzerland AG, Cham, Switzerland, pp 525–557

    Chapter  Google Scholar 

  6. Fan MS, Zhao FJ, Fairweather-Taitc SJ, Poultona PR, Dunhama SJ, McGrath SP (2008) Evidence of decreasing mineral density in wheat grain over the last 160 years. J Trace Elem Med Biol 22:315–324

    Article  CAS  Google Scholar 

  7. Zielinski H, Ceglinska A, Michalska A (2008) Bioactive compounds in spelt bread. Eur Food Res Technol 226:537–544

    Article  CAS  Google Scholar 

  8. Gomez-Becerra HF, Erdem H, Yazici A, Tutus Y, Torun B, Ozturk L, Cakmak I (2010) Grain concentration of protein and mineral nutrients in a large collection of spelt wheat grown under different environments. J Cereal Sci 52:342–349

    Article  CAS  Google Scholar 

  9. Escarnot E, Aguedo M, Agneessens R, Wathelet B, Paquot M (2011) Extraction and characterization of water-extractable and water-unextractable arabinoxylans from spelt bran: study of the hydrolysis conditions for monosaccharides analyses. J Cereal Sci 53:45–52

    Article  CAS  Google Scholar 

  10. Guzman C, Medina-Larque AS, Velu G, Gonzalez-Santoyo H, Singh RP, Huerta-Espino J, Ortiz-Monasterio I, Pena RJ (2014) Use of wheat genetic resources to develop biofortified wheat with enhanced grain zinc and iron concentration and desirable processing quality. J Cereal Sci 60:617–622

    Article  CAS  Google Scholar 

  11. Hlisnikovsky L, Hejcman M, Kunzova E, Mensik L (2019) The effect of soil-climate conditions on yielding parameters, chemical compositions and baking quality of ancient wheat species Triticum monococcum L., Triticum dicoccum Schrank and Triticum spelt L. in comparison with modern Triticum aestivum L. Arch Agron Soil Sci 65:152–163

    Article  Google Scholar 

  12. Dunwell JM (2010) Haploids in flowering plants: origins and exploitation. Plant Biotechnol J 8:377–424

    Article  CAS  Google Scholar 

  13. Germana MA (2011) Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Rep 30:839–857

    Article  CAS  Google Scholar 

  14. Hensel G, Oleszczuk S, Daghma DES, Zimny J, Melzer M, Kumlehn J (2012) Analysis of T-DNA integration and generative segregation in transgenic winter triticale (×Triticosecale Wittmack). BMC Plant Biol 12:171

    Article  CAS  Google Scholar 

  15. Niu Z, Jiang A, Abu Hammad W, Oladzadabbasabadi A, Xu SS, Mergoum M, Elias EM (2014) Review of doubled haploid production in durum and common wheat through wheat × maize hybridization. Plant Breed 133:313–320

    Article  CAS  Google Scholar 

  16. Shchukina LV, Pshenichnikova TA, Khlestkina EK, Misheva S, Kartseva T, Abugalieva A, Borner A (2018) Chromosomal location and mapping of quantitative trait locus determining technological parameters of grain and flour in strong-flour bread wheat cultivar Saratovskaya 29. Cereal Res Commun 46:628–638

    Article  CAS  Google Scholar 

  17. Sharma P, Chaudhary HK, Manoj NV, Kumar P (2019) New protocol for colchicine induced efficient doubled haploidy in haploid regenerants of tetraploid and hexaploid wheats at in vitro level. Cereal Res Commun 47:356–368

    Article  CAS  Google Scholar 

  18. Testillano PS (2019) Microspore embryogenesis: targeting the determinant factors of stress-induced cell reprogramming for crop improvement. J Exp Bot 70:2965–2978

    Article  CAS  Google Scholar 

  19. Kalinowska K, Chamas S, Unkel K, Demidov D, Lermontova I, Dresselhaus T, Kumlehn J, Dunemann F, Houben A (2019) State-of-the-art and novel developments of in vivo haploid technologies. Theor Appl Genet 132:593–605

    Article  CAS  Google Scholar 

  20. Lantos C, Jenes B, Bona L, Cserháti M, Pauk J (2016) High frequency of doubled haploid plant production in spelt wheat. Acta Biol Cracov Ser Bot 58:107–112

    Google Scholar 

  21. Lantos C, Bóna L, Nagy É, Békés F, Pauk J (2018) Induction of in vitro androgenesis in anther and isolated microspore culture of different spelt wheat (Triticum spelta L.) genotypes. Plant Cell Tiss Org 133:385–393

    Article  CAS  Google Scholar 

  22. Lantos C, Purgel S, Ács K, Langó B, Bóna L, Boda K, Békés F, Pauk J (2019) Utilization of in vitro anther culture in spelt wheat breeding. Plan Theory 8:436

    CAS  Google Scholar 

  23. Castillo AM, Allue S, Costar A, Alvaro F, Valles MP (2019) Doubled haploid production from Spanish and central European spelt by anther culture. J Agric Sci Tech Iran 21:1313–1324

    Google Scholar 

  24. Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cellcycle in intact plant-tissues. Science 220:1049–1051

    Article  CAS  Google Scholar 

  25. Ouyang JW, Jia SE, Zhang C, Chen X, Fen G (1989) Annual report, a new synthetic medium (W14) for wheat anther culture; Institute of Genetics. Academia Sinica, Beijing, China, pp 91–92

    Google Scholar 

  26. Lantos C, Pauk J (2016) Anther culture as an effective tool in winter wheat (Triticum aestivum L.) breeding. Russ J Genet 52:794–801

    Article  CAS  Google Scholar 

  27. Pauk J, Mihály R, Puolimatka M (2003) Protocol of wheat (Triticum aestivum L.) anther culture. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. A manual. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 59–64

    Chapter  Google Scholar 

Download references

Acknowledgements

This project was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. The experiments were interlocked with scientific programmes (project code: OTKA-K_16-K119835; name of the project: Improvement of spelt wheat lines with low fermentable carbohydrate content (FODMAP) using modern and classical research methods), Thematic Excellence Programme 2019 (project code: TUDFO/51757/2019-ITM, supporter: National Research, Development and Innovation Office) and GINOP project (project number: GINOP-2.2.1-15-2016-00026). The authors thank the conscientious work of Ferenc Markó, Krisztina Kéri and Sándor Vajasdi-Nagy. Furthermore, the authors also thank László Láng (Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary) and Center for Plant Diversity (Tápiószele, gene bank of Hungary) for supplying the tested spelt wheat varieties (‘Franckenkorn’, ‘Mv Martongold’ and ‘Oberkulmer Rotkorn’) and gene bank germplasms (RCAT056296, RCAT058694, RCAT060960) for experiments, respectively.

Funding: This research was funded by the Hungarian Academy of Sciences, grant number ‘János Bolyai Research Scholarship’; National Research, Development and Innovation Office, grant number ‘OTKA-K_16-K119835’, ‘GINOP-2.2.1-15-2016-00026’ and ‘TUDFO/51757/2019-ITM’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to János Pauk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lantos, C., Pauk, J. (2021). In Vitro Anther Culture for Doubled Haploid Plant Production in Spelt Wheat. In: Segui-Simarro, J.M. (eds) Doubled Haploid Technology. Methods in Molecular Biology, vol 2287. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1315-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1315-3_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1314-6

  • Online ISBN: 978-1-0716-1315-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics