Skip to main content

Detection of Programmed Cell Death Ligand 1 Expression in Lung Cancer Clinical Samples by an Automated Immunohistochemistry System

  • Protocol
  • First Online:
Lung Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2279))

Abstract

Programmed cell death 1 (PD-1) plays an important role in subsiding immune responses, in promoting self-tolerance through suppressing the activity of T-cells, and in promoting differentiation of regulatory T-cells. One of its ligands, programmed cell death ligand 1 (PD-L1) acts as a checkpoint regulator in immune cells and is also expressed in a wide range of cancer types. Anti-PD therapy modulates immune responses at the tumor site, targets tumor-induced immune defects, and repairs ongoing immune responses. Since drugs that target the PD-1/PD-L1 pathways became available as a cancer treatment, there is need for the use of different antibodies to detect the presence of these proteins in tumoral samples by immunohistochemistry or other assays. Because the detection of these antigens in tumor samples is highly clinically informative for guiding treatment decisions, especially to establish the aptness of a patient to receive anti-PD therapy, it is necessary to have a validation process that guaranties that the test results obtained when using antibodies against these proteins are specific, selective, reproducible, and conducive to quantification of antigen abundance in cancer tissue sections. Here we describe an automated immunohistochemistry staining procedure that can be applied for the validation of multiple anti-PD-L1 antibody clones when used for the staining of formalin-fixed, paraffin-embedded lung cancer tissue sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Okazaki T, Honjo T (2007) PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol 19(7):813–824

    Article  CAS  Google Scholar 

  2. Salmaninejad A, Valilou SF, Shabgah AG et al (2019) PD-1/PD-L1 pathway: basic biology and role in cancer immunotherapy. J Cell Physiol 234(10):16824–16837

    Article  CAS  Google Scholar 

  3. Callea M, Pedica F, Doglioni C (2016) Programmed death 1 (PD-1) and its ligand (PD-L1) as a new frontier in cancer immunotherapy and challenges for the pathologist: state of the art. Pathologica 108(2):48–58

    CAS  PubMed  Google Scholar 

  4. Sun C, Mezzadra R, Schumacher TN (2018) Regulation and function of the PD-L1 checkpoint. Immunity 48(3):434–452

    Article  CAS  Google Scholar 

  5. Blank C, Gajewski TF, Mackensen A (2005) Interaction of PD-L1 on tumor cells with PD-1 on tumor-specific T cells as a mechanism of immune evasion: implications for tumor immunotherapy. Cancer Immunol Immunother 54(4):307–314

    Article  CAS  Google Scholar 

  6. Iwai Y, Ishida M, Tanaka Y (2002) Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A 99(19):12293–12297

    Article  CAS  Google Scholar 

  7. Blank C, Mackensen A (2007) Contribution of the PD-L1/PD-1 pathway to T-cell exhaustion: an update on implications for chronic infections and tumor evasion. Cancer Immunol Immunother 56(5):739–745

    Article  Google Scholar 

  8. Patel SP, Kurzrock R (2015) PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther 14(4):847–856

    Article  CAS  Google Scholar 

  9. Rimm DL, Han G, Taube JM et al (2017) A prospective, multi-institutional, pathologist-based assessment of 4 immunohistochemistry assays for PD-L1 expression in non-small cell lung cancer. JAMA Oncol 3(8):1051–1058

    Article  Google Scholar 

  10. Wolff AC, Hammond ME, Schwartz JN et al (2007) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 25(1):118–145

    Article  CAS  Google Scholar 

  11. Bordeaux J, Welsh A, Agarwal S et al (2010) Antibody validation. BioTechniques 48(3):197–209

    Article  CAS  Google Scholar 

  12. Igarashi T, Teramoto K, Ishida M et al (2016) Scoring of PD-L1 expression intensity on pulmonary adenocarcinomas and the correlations with clinicopathological factors. ESMO Open 1(4):e000083

    Article  Google Scholar 

  13. Kulangara K, Zhang N, Corigliano E et al (2019) Clinical utility of the combined positive score for programmed death ligand-1 expression and the approval of Pembrolizumab for treatment of gastric cancer. Arch Pathol Lab Med 143(3):330–337

    Article  CAS  Google Scholar 

  14. Sunshine JC, Nguyen PL, Kaunitz GJ et al (2017) PD-L1 expression in melanoma: a quantitative immunohistochemical antibody comparison. Clin Cancer Res 23(16):4938–4944

    Article  CAS  Google Scholar 

  15. Brunnstrom H, Johansson A, Westbom-Fremer S et al (2017) PD-L1 immunohistochemistry in clinical diagnostics of lung cancer: inter-pathologist variability is higher than assay variability. Mod Pathol 30(10):1411–1421

    Article  Google Scholar 

  16. Kerr KM, Tsao MS, Nicholson AG et al (2015) Programmed death-ligand 1 immunohistochemistry in lung cancer: in what state is this art? J Thorac Oncol 10(7):985–989

    Article  CAS  Google Scholar 

  17. Koppel C, Schwellenbach H, Zielinski D et al (2018) Optimization and validation of PD-L1 immunohistochemistry staining protocols using the antibody clone 28-8 on different staining platforms. Mod Pathol 31(11):1630–1644

    Article  CAS  Google Scholar 

  18. Tsao MS, Kerr KM, Kockx M et al (2018) PD-L1 immunohistochemistry comparability study in real-life clinical samples: results of blueprint phase 2 project. J Thorac Oncol 13(9):1302–1311

    Article  Google Scholar 

  19. Roge R, Vyberg M, Nielsen S (2017) Accurate PD-L1 protocols for non-small cell lung cancer can be developed for automated staining platforms with clone 22C3. Appl Immunohistochem Mol Morphol 25(6):381–385

    Article  CAS  Google Scholar 

  20. Cree IA, Booton R, Cane P et al (2016) PD-L1 testing for lung cancer in the UK: recognizing the challenges for implementation. Histopathology 69(2):177–186

    Article  Google Scholar 

  21. Biosystems L. Bond™ Oracle™ HER2 IHC System for Leica BOND-MAX System Instructions For Use 2014 [Manual for use on Leica Biosystems’ BOND-MAX fully automated, advanced staining system.]. https://drp8p5tqcb2p5.cloudfront.net/fileadmin/downloads_lbs/Oracle_HER2_Bond_IHC_System_USA_Breast_Only/User_Manuals_IFUs/Bond_Oracle_HER2_IHC_System_TA9145_EN-US_Rev_B.pdf

  22. Abcam. Antibody dilutions and titer. https://www.abcam.com/protocols/antibody-dilutions-and-titer

  23. Lipman NS, Jackson LR, Trudel LJ et al (2005) Monoclonal versus polyclonal antibodies: distinguishing characteristics, applications, and information resources. ILAR J 46(3):258–268

    Article  CAS  Google Scholar 

  24. Stadler C, Hjelmare M, Neumann B et al (2012) Systematic validation of antibody binding and protein subcellular localization using siRNA and confocal microscopy. J Proteome 75(7):2236–2251

    Article  CAS  Google Scholar 

  25. Howat WJ, Lewis A, Jones P et al (2014) Antibody validation of immunohistochemistry for biomarker discovery: recommendations of a consortium of academic and pharmaceutical based histopathology researchers. Methods 70(1):34–38

    Article  CAS  Google Scholar 

  26. Parra ER, Uraoka N, Jiang M et al (2017) Validation of multiplex immunofluorescence panels using multispectral microscopy for immune-profiling of formalin-fixed and paraffin-embedded human tumor tissues. Sci Rep 7(1):13380

    Article  Google Scholar 

  27. Parra ER, Villalobos P, Mino B (2018) Comparison of different antibody clones for immunohistochemistry detection of programmed cell death ligand 1 (PD-L1) on non-small cell lung carcinoma. Appl Immunohistochem Mol Morphol 26(2):83–93

    Article  CAS  Google Scholar 

  28. Torlakovic EE, Nielsen S, Vyberg M et al (2015) Getting controls under control: the time is now for immunohistochemistry. J Clin Pathol 68(11):879–882

    Article  CAS  Google Scholar 

  29. Taylor CR (2014) Predictive biomarkers and companion diagnostics. The future of immunohistochemistry: “in situ proteomics,” or just a “stain”? Appl Immunohistochem Mol Morphol 22(8):555–561

    Article  Google Scholar 

  30. Nghiem PT, Bhatia S, Lipson EJ et al (2016) PD-1 blockade with Pembrolizumab in advanced Merkel-cell carcinoma. N Engl J Med 374(26):2542–2552

    Article  CAS  Google Scholar 

  31. Yuan J, Hegde PS, Clynes R et al (2016) Novel technologies and emerging biomarkers for personalized cancer immunotherapy. J Immunother Cancer 4:3

    Article  Google Scholar 

  32. Parra ER, Francisco-Cruz A, Wistuba I (2019) State-of-the-art of profiling immune contexture in the era of multiplexed staining and digital analysis to study paraffin tumor tissues. Cancers 11(2):247

    Article  CAS  Google Scholar 

  33. Parra ER (2018) Novel technology to assess programmed death-ligand 1 expression by multiplex immunofluorescence and image analysis. Appl Immunohistochem Mol Morphol 26(2):e22–ee4

    Article  Google Scholar 

  34. Hirsch FR, McElhinny A, Stanforth D et al (2017) PD-L1 immunohistochemistry assays for lung cancer: results from phase 1 of the blueprint PD-L1 IHC assay comparison project. J Thorac Oncol 12(2):208–222

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the people that work in the Translational Molecular Pathology Immunoprofiling Laboratory, Luisa Solís, Mei Jang, Tong Li, Auriole Tamegnon, Barbara Mino, Wei Lu, and Jianling Zhou and the pathologists team that works in the image analysis, for their dedication to provide high quality data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Edwin Roger Parra or Sharia Hernández Ruiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Parra, E.R., Hernández Ruiz, S. (2021). Detection of Programmed Cell Death Ligand 1 Expression in Lung Cancer Clinical Samples by an Automated Immunohistochemistry System. In: Santiago-Cardona, P.G. (eds) Lung Cancer. Methods in Molecular Biology, vol 2279. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1278-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1278-1_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1277-4

  • Online ISBN: 978-1-0716-1278-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics