Skip to main content

Measuring Conjugated Linoleic Acid (CLA) Production by Bifidobacteria

  • Protocol
  • First Online:
Bifidobacteria

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2278))

Abstract

The biological significance of conjugated fatty acids (CFAs) has been linked to positive health effects based on biomedical, in vitro, and clinical studies. Of note, conjugated linoleic acids (CLAs) are the most widely characterized fatty acids as geometric isomers cis-9,trans-11 and trans-10,cis-12 CLA occur naturally in ruminant fats, dairy products, and hydrogenated oils. Concerning CLAs, it is known that bacterial biohydrogenation, a process whereby ruminal bacteria or starter cultures of lactic acid bacteria have the ability to synthesize CLA by altering the chemical structure of essential fatty acids via enzymatic mechanisms, produces a multitude of isomers with desirable properties. Bifidobacterium species are classed as food grade microorganisms and some of these strains harness molecular determinants that are responsible for the bioconversion of free fatty acids to CLAs. However, molecular mechanisms have yet to be fully elucidated. Reports pertaining to CLAs have been attributed to suppressing tumor growth, delaying the onset of diabetes mellitus and reducing body fat in obese individuals. Given the increased attention for their bioactive properties, we describe in this chapter the qualitative and quantitative methods used to identify and quantify CLA isomers produced by bifidobacterial strains in supplemented broth media. These approaches enable rapid detection of potential CLA producing strains and accurate measurement of fatty acids in biological matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Whelan J, Fritsche K (2013) Linoleic Acid. Adv Nutr 4(3):311–312

    Article  Google Scholar 

  2. Shinn SE, Ruan CM, Proctor A (2017) Strategies for producing and incorporating conjugated linoleic acid–rich oils in foods. Annu Rev Food Sci Technol 8(1):181–204

    Article  CAS  Google Scholar 

  3. Hennessy AA et al (2011) The health promoting properties of the conjugated isomers of α-linolenic acid. Lipids 46(2):105–119

    Article  CAS  Google Scholar 

  4. Jenkins TC et al (2008) Board-invited review: recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem1. J Anim Sci 86(2):397–412

    Article  CAS  Google Scholar 

  5. Polan CE, McNeill JJ, Tove SB (1964) Biohydrogenation of unsaturated fatty acids by rumen bacteria. J Bacteriol 88(4):1056–1064

    Article  CAS  Google Scholar 

  6. Bederska-Łojewska D, Orczewska-Dudek S, Pieszka M (2013) Metabolism of arachidonic acid, its concentration in animal products and influence on inflammatory processes in the human body: a review/Metabolizm kwasu arachidonowego, jego stężenie w produktach zwierzęcych i wpływ na procesy zapalne w organizmie człowieka–artykuł przeglądowy. Ann Anim Sci 13(2):177–194

    Article  Google Scholar 

  7. Bernas A et al (2003) Isomerization of linoleic acid over supported metal catalysts. Appl Catal A Gen 245(2):257–275

    Article  CAS  Google Scholar 

  8. Lanier JS, Corl BA (2015) Challenges in enriching milk fat with polyunsaturated fatty acids. J Anim Sci Biotechnol 6(1):26

    Article  CAS  Google Scholar 

  9. Salsinha AS et al (2018) Microbial production of conjugated linoleic acid and conjugated linolenic acid relies on a multienzymatic system. Microbiol Mol Biol Rev 82(4):e00019–e00018

    Article  CAS  Google Scholar 

  10. Jenkins TC, Fellner V, McGuffey RK (2003) Monensin by fat interactions on trans fatty acids in cultures of mixed ruminal microorganisms grown in continuous Fermentors fed corn or barley. J Dairy Sci 86(1):324–330

    Article  CAS  Google Scholar 

  11. Ha YL, Grimm NK, Pariza MW (1987) Anticarcinogens from fried ground beef: heat-altered derivatives of linoleic acid. Carcinogenesis 8(12):1881–1887

    Article  CAS  Google Scholar 

  12. Garibay-Nieto N et al (2016) Effects of conjugated linoleic acid and metformin on insulin sensitivity in obese children: randomized clinical trial. J Clin Endocrinol Metabol 102(1):132–140

    Article  Google Scholar 

  13. Toomey S et al (2006) Profound resolution of early atherosclerosis with conjugated linoleic acid. Atherosclerosis 187(1):40–49

    Article  CAS  Google Scholar 

  14. Bassaganya-Riera J et al (2012) Conjugated linoleic acid modulates immune responses in patients with mild to moderately active Crohn's disease. Clin Nutr 31(5):721–727

    Article  CAS  Google Scholar 

  15. Rainer L, Heiss CJ (2004) Conjugated linoleic acid: health implications and effects on body composition. J Am Diet Assoc 104(6):963–968

    Article  CAS  Google Scholar 

  16. Virsangbhai CK et al (2019) Potential health benefits of conjugated linoleic acid: an important functional dairy ingredient. Eur J Nutr Food Safe:200–213

    Google Scholar 

  17. Tarnopolsky M, Zimmer A, Paikin J, Safdar A, Aboud A, Pearce E, Roy B, Doherty T (2007) Creatine monohydrate and conjugated linoleic acid improve strength and body composition following resistance exercise in older adults. PLoS One 2(10):e991

    Article  CAS  Google Scholar 

  18. O’Sheaa M, Van Der Zeeb M, Mohedeb I (2019) CLA sources and human studies. Healthful Lipids:249

    Google Scholar 

  19. EFSA Panel on Dietetic Products, N. and Allergies (2010) Scientific opinion on the safety of “conjugated linoleic acid (CLA)-rich oil”(Tonalin® TG 80) as a novel food ingredient. EFSA J 8(5):1600

    Article  CAS  Google Scholar 

  20. EFSA Panel on Dietetic Products, N. and Allergies (2010) Scientific opinion on the safety of “conjugated linoleic acid (CLA)-rich oil”(Clarinol®) as a novel food ingredient. EFSA J 8(5):1601

    Article  CAS  Google Scholar 

  21. Penedo LA, Nunes JC, Gama MAS, Leite PEC, Quirico-Santos TF, Torres AG (2013) Intake of butter naturally enriched with cis9, trans11 conjugated linoleic acid reduces systemic inflammatory mediators in healthy young adults. J Nutr Biochem 24(12):2144–2151

    Article  CAS  Google Scholar 

  22. Bu DP, Wang JQ, Dhiman TR, Liu SJ (2007) Effectiveness of oils rich in linoleic and linolenic acids to enhance conjugated linoleic acid in milk from dairy cows. J Dairy Sci 90(2):998–1007

    Article  CAS  Google Scholar 

  23. Kuhl GC, Gusso AP, Porto BLS, Müller CMO, Mazzon RR, de Oliveira MAL, dos Santos Richards NSP, De Dea J (2017) Selection of lactic acid bacteria for the optimized production of Sheep’s Milk yogurt with a high conjugated linoleic acid content. J Food Res 6(4):44–59

    Article  CAS  Google Scholar 

  24. Abd El-Salam MH, Hippen AR, Assem FM et al (2011) Preparation and properties of probiotic cheese high in conjugated linoleic acid content. Int J Dairy Technol 64(1):64–74

    Article  CAS  Google Scholar 

  25. EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) (2016) Safety and efficacy of methylester of conjugated linoleic acid (t10, c12 isomer) for pigs for fattening, sows and cows. EFSA J 14(1):4348

    Google Scholar 

  26. Kennedy A, Martinez K, Chung S, LaPoint K, Hopkins R, Schmidt SF, Andersen K, Mandrup S, McIntosh M (2010) Inflammation and insulin resistance induced by trans-10, cis-12 conjugated linoleic acid depend on intracellular calcium levels in primary cultures of human adipocytes. J Lipid Res 51(7):1906–1917

    Article  CAS  Google Scholar 

  27. Benjamin S, Prakasan P, Sreedharan S, Wright ADG, Spener F (2015) Pros and cons of CLA consumption: an insight from clinical evidences. Nutr Metab 12(1):4

    Google Scholar 

  28. Yang B, Gao H, Stanton C, Ross RP, Zhang H, Chen YQ, Chen H, Chen W (2017) Bacterial conjugated linoleic acid production and their applications. Prog Lipid Res 68:26–36

    Article  CAS  Google Scholar 

  29. Coakley M, Ross RP, Nordgren M, Fitzgerald G, Devery R, Stanton C (2003) Conjugated linoleic acid biosynthesis by human-derived Bifidobacterium species. J Appl Microbiol 94(1):138–145

    Article  CAS  Google Scholar 

  30. Hennessy AA, Ross RP, Devery R, Stanton C (2009) Optimization of a reconstituted skim milk based medium for enhanced CLA production by bifidobacteria. J Appl Microbiol 106(4):1315–1327

    Article  CAS  Google Scholar 

  31. Farmani J, Safari M, Roohvand F, Razavi SH, Aghasadeghi MR, Noorbazargan H (2010) Conjugated linoleic acid‐producing enzymes: A bioinformatics study. Eur J Lipid Sci Technol 112(10):1088–1100

    Google Scholar 

  32. Rosberg-Cody E, Johnson MC, Fitzgerald GF, Ross PR, Stanton C (2007) Heterologous expression of linoleic acid isomerase from Propionibacterium acnes and anti-proliferative activity of recombinant trans-10, cis-12 conjugated linoleic acid. Microbiology 153(Pt 8):2483

    Article  CAS  Google Scholar 

  33. O'Connell KJ, Motherway MOC, Hennessey AA, Brodhun F, Ross RP, Feussner I, Stanton C, Fitzgerald GF, van Sinderen D (2013) Identification and characterization of an oleate hydratase-encoding gene from Bifidobacterium breve. Bioengineered 4(5):313–321

    Article  Google Scholar 

  34. Barrett E et al (2007) Rapid screening method for analyzing the conjugated linoleic acid production capabilities of bacterial cultures. Appl Environ Microbiol 73(7):2333–2337

    Article  CAS  Google Scholar 

  35. Oh DK, Hong GH, Lee Y, Min S, Sin HS, Cho SK (2003) Production of conjugated linoleic acid by isolated Bifidobacterium strains. World J Microbiol Biotechnol 19:907–912

    Article  CAS  Google Scholar 

  36. Ichihara, K. I., & Fukubayashi, Y. (2010). Preparation of fatty acid methyl esters for gas-liquid chromatography. J Lipid Res 51(3):635–640

    Google Scholar 

  37. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    Article  CAS  Google Scholar 

  38. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  Google Scholar 

  39. Jaglan N, Kumar S, Choudhury PK, Tyagi B, Tyagi AK (2019) Isolation, characterization and conjugated linoleic acid production potential of bifidobacterial isolates from ruminal fluid samples of Murrah buffaloes. Anaerobe 56:40–45

    Article  CAS  Google Scholar 

  40. Ribeiro SC, Stanton C, Yang B, Ross RP, Silva CC (2018) Conjugated linoleic acid production and probiotic assessment of lactobacillus plantarum isolated from Pico cheese. LWT 90:403–411

    Article  CAS  Google Scholar 

  41. Rodríguez-Alcalá LM, Braga T, Malcata FX, Gomes A, Fontecha J (2011) Quantitative and qualitative determination of CLA produced by Bifidobacterium and lactic acid bacteria by combining spectrophotometric and ag+-HPLC techniques. Food Chem 125(4):1373–1378

    Article  CAS  Google Scholar 

  42. Coakley M, Banni S, Johnson MC, Mills S, Devery R, Fitzgerald G, Paul Ross R, Stanton C (2009) Inhibitory effect of conjugated α-linolenic acid from bifidobacteria of intestinal origin on SW480 cancer cells. Lipids 44(3):249–256

    Article  CAS  Google Scholar 

  43. Amores G, Virto M (2019) Total and free fatty acids analysis in milk and dairy fat. Separations 6(1):14

    Article  CAS  Google Scholar 

  44. Stanton C, Lawless F, Kjellmer G, Harrington D, Devery R, Connolly JF, Murphy J (1997) Dietary influences on bovine milk cis‐9, trans‐11‐conjugated linoleic acid content. J Food Sci 62(5):1083–1086

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Stanton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ahern, G., van Sinderen, D., Yang, B., Ross, R.P., Stanton, C. (2021). Measuring Conjugated Linoleic Acid (CLA) Production by Bifidobacteria. In: van Sinderen, D., Ventura, M. (eds) Bifidobacteria. Methods in Molecular Biology, vol 2278. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1274-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1274-3_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1273-6

  • Online ISBN: 978-1-0716-1274-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics