Skip to main content

Bifidobacterium Transformation

  • Protocol
  • First Online:
Bifidobacteria

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2278))

Abstract

The protocol presented in this chapter describes a generic method for electrotransformation of Bifidobacterium spp., outlining a technique that is ideal for conferring selective properties onto strains as well as allowing the user to introduce or knock out/in selected genes for phenotypic characterization purposes. We have generalized on the plasmid chosen for transformation and antibiotic selection marker, but the protocol is versatile in this respect and we are able to achieve transformation efficiencies up to 107 transformants/μg of DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sugar IP, Neumann E (1984) Stochastic model for electric field-induced membrane pores electroporation. Biophys Chem 19:211–225

    Article  CAS  Google Scholar 

  2. Wong TK, Neumann E (1982) Electric field mediated gene transfer. Biochem Biophys Res Commun 107:584–587

    Article  CAS  Google Scholar 

  3. Miller JF, Dower WJ, Tompkins LS (1988) High-voltage electroporation of bacteria: genetic transformation of campylobacter jejuni with plasmid DNA. Proc Natl Acad Sci U S A 85:856–860

    Article  CAS  Google Scholar 

  4. Zaharoff DA, Henshaw JW, Mossop B et al (2008) Mechanistic analysis of electroporation-induced cellular uptake of macromolecules. Exp Biol Med (Maywood) 233:94–105

    Article  CAS  Google Scholar 

  5. O'Callaghan A, Bottacini F, O'Connell Motherway M et al (2015) Pangenome analysis of Bifidobacterium longum and site-directed mutagenesis through by-pass of restriction-modification systems. BMC Genomics 16:832

    Article  CAS  Google Scholar 

  6. Ruiz L, Motherway MO, Lanigan N et al (2013) Transposon mutagenesis in Bifidobacterium breve: construction and characterization of a Tn5 transposon mutant library for Bifidobacterium breve UCC2003. PLoS One 8:e64699

    Article  CAS  Google Scholar 

  7. Cronin M, Morrissey D, Rajendran S et al (2010) Orally administered bifidobacteria as vehicles for delivery of agents to systemic tumors. Mol Ther 18:1397–1407

    Article  CAS  Google Scholar 

  8. Bernini LJ, Simão AN, Alfieri DF et al (2016) Beneficial effects of Bifidobacterium lactis on lipid profile and cytokines in patients with metabolic syndrome: a randomized trial. Effects of probiotics on metabolic syndrome. Nutrition 32:716–719

    Article  CAS  Google Scholar 

  9. O'Callaghan A, van Sinderen D (2016) Bifidobacteria and their role as members of the human gut microbiota. Front Microbiol 7:925–925

    Article  Google Scholar 

  10. Bottacini F, Morrissey R, Roberts RJ et al (2018) Comparative genome and methylome analysis reveals restriction/modification system diversity in the gut commensal Bifidobacterium breve. Nucleic Acids Res 46:1860–1877

    Article  CAS  Google Scholar 

  11. Fischer W, Bauer W, Feigel M (1987) Analysis of the lipoteichoic-acid-like macroamphiphile from Bifidobacterium bifidum subspecies pennsylvanicum by one- and two-dimensional 1H- and 13C-NMR spectroscopy. Eur J Biochem 165:647–652

    Article  CAS  Google Scholar 

  12. Brancaccio VF, Zhurina DS, Riedel CU (2013) Tough nuts to crack: site-directed mutagenesis of bifidobacteria remains a challenge. Bioengineered 4:197–202

    Article  Google Scholar 

  13. Foroni E, Turroni F, Guglielmetti S et al (2012) An efficient and reproducible method for transformation of genetically recalcitrant bifidobacteria. FEMS Microbiol Lett 333:146–152

    Article  CAS  Google Scholar 

  14. Rossi M, Brigidi P, Matteuzzi D (1997) An efficient transformation system for Bifidobacterium spp. Lett Appl Microbiol 24:33–36

    Article  CAS  Google Scholar 

  15. Park MJ, Park MS, Ji GE (2018) Improvement of electroporation-mediated transformation efficiency for a Bifidobacterium strain to a reproducibly high level. J Microbiol Methods 159:112–119

    Article  CAS  Google Scholar 

  16. O'Connell Motherway M, O'Driscoll J, Fitzgerald GF et al (2009) Overcoming the restriction barrier to plasmid transformation and targeted mutagenesis in Bifidobacterium breve UCC2003. Microb Biotechnol 2:321–332

    Article  CAS  Google Scholar 

  17. Law J, Buist G, Haandrikman A et al (1995) A system to generate chromosomal mutations in Lactococcus lactis which allows fast analysis of targeted genes. J Bacteriol 177:7011–7018

    Article  CAS  Google Scholar 

  18. Yasui K, Kano Y, Tanaka K et al (2009) Improvement of bacterial transformation efficiency using plasmid artificial modification. Nucleic Acids Res 37:e3

    Article  CAS  Google Scholar 

  19. Zhang G, Wang W, Deng A et al (2012) A mimicking-of-DNA-methylation-patterns pipeline for overcoming the restriction barrier of bacteria. PLoS Genet 8:e1002987

    Article  CAS  Google Scholar 

  20. Dower WJ, Miller JF, Ragsdale CW (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16:6127–6145

    Article  CAS  Google Scholar 

  21. Putman M, van Veen HW, Poolman B et al (1999) Restrictive use of detergents in the functional reconstitution of the secondary multidrug transporter LmrP. Biochemistry 38:1002–1008

    Article  CAS  Google Scholar 

  22. Kuipers OP, de Ruyter PGGA, Kleerebezem M et al (1998) Quorum sensing-controlled gene expression in lactic acid bacteria. J Biotechnol 64:15–21

    Article  CAS  Google Scholar 

  23. McGrath S, Fitzgerald GF, van Sinderen D (2001) Improvement and optimization of two engineered phage resistance mechanisms in Lactococcus lactis. Appl Environ Microbiol 67:608–616

    Article  CAS  Google Scholar 

  24. Cronin M, Knobel M, O'Connell-Motherway M et al (2007) Molecular dissection of a bifidobacterial replicon. Appl Environ Microbiol 73:7858–7866

    Article  CAS  Google Scholar 

  25. Alvarez-Martin P, O'Connell-Motherway M, van Sinderen D et al (2007) Functional analysis of the pBC1 replicon from Bifidobacterium catenulatum L48. Appl Microbiol Biotechnol 76:1395–1402

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was sponsored by Nutricia Research, Utrecht, The Netherlands. E.C.H., F.B., J.M., and D.v.S. are members of APC Microbiome Ireland, which is funded by Science Foundation Ireland (SFI) through the Irish Government’s National Development Plan (Grant Numbers SFI/12/RC/2273-P1 and SFI/12/RC/2273-P2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douwe van Sinderen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hoedt, E.C., Bongers, R.S., Bottacini, F., Knol, J., MacSharry, J., van Sinderen, D. (2021). Bifidobacterium Transformation. In: van Sinderen, D., Ventura, M. (eds) Bifidobacteria. Methods in Molecular Biology, vol 2278. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1274-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1274-3_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1273-6

  • Online ISBN: 978-1-0716-1274-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics