Skip to main content

Integrative Methods for Studying Cardiac Energetics

  • Protocol
  • First Online:
Mitochondrial Medicine

Abstract

The more recent studies of human pathologies have essentially revealed the complexity of the interactions involved at the different levels of integration in organ physiology. Integrated organ thus reveals functional properties not predictable by underlying molecular events. It is therefore obvious that current fine molecular analyses of pathologies should be fruitfully combined with integrative approaches of whole organ function. It follows that an important issue in the comprehension of the link between molecular events in pathologies and whole organ function/dysfunction is the development of new experimental strategies aimed at the study of the integrated organ physiology. Cardiovascular diseases are a good example as heart submitted to ischemic conditions has to cope both with a decreased supply of nutrients and oxygen, and the necessary increased activity required to sustain whole body—including the heart itself—oxygenation.

By combining the principles of control analysis with noninvasive 31P NMR measurement of the energetic intermediates and simultaneous measurement of heart contractile activity, we developed MoCA (for Modular Control and regulation Analysis), an integrative approach designed to study in situ control and regulation of cardiac energetics during contraction in intact beating perfused isolated heart (Diolez et al., Am J Physiol Regul Integr Comp Physiol 293(1):R13-R19, 2007). Because it gives real access to integrated organ function, MoCA brings out a new type of information—the “elasticities,” referring to integrated internal responses to metabolic changes—that may be a key to the understanding of the processes involved in pathologies. MoCA can potentially be used not only to detect the origin of the defects associated with the pathology, but also to provide the quantitative description of the routes by which these defects—or also drugs—modulate global heart function, therefore opening therapeutic perspectives. This review presents selected examples of the applications to isolated intact beating heart that evidence different modes of energetic regulation of cardiac contraction. We also discuss the clinical application by using noninvasive 31P cardiac energetics examination under clinical conditions for detection of heart pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sheeran FL, Pepe S (2006) Energy deficiency in the failing heart: linking increased reactive oxygen species and disruption of oxidative phosphorylation rate. Biochim Biophys Acta 1757(5–6):543–552

    Article  CAS  PubMed  Google Scholar 

  2. Fink M, Noble D (2010) Pharmacodynamic effects in the cardiovascular system: the modeller’s view. Basic Clin Pharmacol Toxicol 106(3):243–249. Epub 2010/05/18. eng

    Article  CAS  PubMed  Google Scholar 

  3. Cascante M, Boros LG, Comin-Anduix B, de Atauri P, Centelles JJ, Lee PW (2002) Metabolic control analysis in drug discovery and disease. Nat Biotechnol 20(3):243–249. Epub 2002/03/05. eng

    Article  CAS  PubMed  Google Scholar 

  4. Fell DA (1992) Metabolic control analysis: a survey of its theoretical and experimental development. Biochem J 286(Pt 2):313–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Heinrich R, Rapoport TA (1974) A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur J Biochem 42(1):89–95

    Article  CAS  PubMed  Google Scholar 

  6. Kacser H, Burns JA (1973) The control of flux. Symp Soc Exp Biol 27:65–104

    CAS  PubMed  Google Scholar 

  7. Kacser H, Burns JA (1995) The control of flux. Biochem Soc Trans 23(2):341–366

    Article  CAS  PubMed  Google Scholar 

  8. Brand MD (1996) Top down metabolic control analysis. J Theor Biol 182(3):351–360. Epub 1996/10/07. eng

    Article  CAS  PubMed  Google Scholar 

  9. Brand MD, Curtis RK (2002) Simplifying metabolic complexity. Biochem Soc Trans 30(2):25–30. Epub 2002/05/25. eng

    Article  CAS  PubMed  Google Scholar 

  10. Brown GC, Hafner RP, Brand MD (1990) A “top-down” approach to the determination of control coefficients in metabolic control theory. Eur J Biochem 188(2):321–325. Epub 1990/03/10. eng

    Article  CAS  PubMed  Google Scholar 

  11. Dufour S, Rousse N, Canioni P, Diolez P (1996) Top-down control analysis of temperature effect on oxidative phosphorylation. Biochem J 314(Pt 3):743-751

    Google Scholar 

  12. Hafner RP, Brown GC, Brand MD (1990) Analysis of the control of respiration rate, phosphorylation rate, proton leak rate and protonmotive force in isolated mitochondria using the 'top-down' approach of metabolic control theory. Eur J Biochem 188(2):313–319. Epub 1990/03/10. eng

    Article  CAS  PubMed  Google Scholar 

  13. Diolez P, Deschodt-Arsac V, Raffard G, Simon C, Santos PD, Thiaudiere E et al (2007) Modular regulation analysis of heart contraction: application to in situ demonstration of a direct mitochondrial activation by calcium in beating heart. Am J Physiol Regul Integr Comp Physiol 293(1):R13–RR9

    Article  CAS  PubMed  Google Scholar 

  14. Diolez P, Raffard G, Simon C, Leducq N, Dos SP, Canioni P (2002) Mitochondria do not control heart bioenergetics. Mol Biol Rep 29(1-2):193–196. Epub 2002/09/21. eng

    Article  CAS  PubMed  Google Scholar 

  15. Kushmerick MJ (1995) Skeletal muscle: a paradigm for testing principles of bioenergetics. J Bioenerg Biomembr 27(6):555–569

    Article  CAS  PubMed  Google Scholar 

  16. Balaban RS (2002) Cardiac energy metabolism homeostasis: role of cytosolic calcium. J Mol Cell Cardiol 34(10):1259–1271

    Article  CAS  PubMed  Google Scholar 

  17. Balaban RS, Bose S, French SA, Territo PR (2003) Role of calcium in metabolic signaling between cardiac sarcoplasmic reticulum and mitochondria in vitro. Am J Physiol Cell Physiol 284(2):C285–C293

    Article  CAS  PubMed  Google Scholar 

  18. Diolez P, Simon C, Leducq N, Canioni P, Dos Santos P (2000) Top down analysis of heart bioenergetics. In: Hofmeyr J-HS, Rohwer M, Snoep JL (eds) BTK2000: animating the cellular map. Stellebosch University Press, Stellenbosch, pp 101–106

    Google Scholar 

  19. Balaban RS (2006) Maintenance of the metabolic homeostasis of the heart: developing a systems analysis approach. Ann N Y Acad Sci 1080:140–153. Epub 2006/11/30. eng

    Article  CAS  PubMed  Google Scholar 

  20. Bendahan D, Desnuelle C, Vanuxem D, Confort-Gouny S, Figarella-Branger D, Pellissier JF et al (1992) 31P NMR spectroscopy and ergometer exercise test as evidence for muscle oxidative performance improvement with coenzyme Q in mitochondrial myopathies. Neurology 42(6):1203–1208

    Article  CAS  PubMed  Google Scholar 

  21. Kemp GJ, Taylor DJ, Radda GK (1993) Control of phosphocreatine resynthesis during recovery from exercise in human skeletal muscle. NMR Biomed 6(1):66–72

    Article  CAS  PubMed  Google Scholar 

  22. Kemp GJ, Taylor DJ, Thompson CH, Hands LJ, Rajagopalan B, Styles P et al (1993) Quantitative analysis by 31P magnetic resonance spectroscopy of abnormal mitochondrial oxidation in skeletal muscle during recovery from exercise. NMR Biomed 6(5):302–310

    Article  CAS  PubMed  Google Scholar 

  23. Korzeniewski B, Deschodt-Arsac V, Calmettes G, Gouspillou G, Franconi JM, Diolez P (2009) Effect of pyruvate, lactate and insulin on ATP supply and demand in unpaced perfused rat heart. Biochem J 423(3):421–428. Epub 2009/08/19. eng

    Article  CAS  PubMed  Google Scholar 

  24. Korzeniewski B, Deschodt-Arsac V, Calmettes G, Franconi JM, Diolez P (2008) Physiological heart activation by adrenaline involves parallel activation of ATP usage and supply. Biochem J 413(2):343–347. Epub 2008/04/02. eng

    Article  CAS  PubMed  Google Scholar 

  25. Deschodt-Arsac V, Calmettes G, Raffard G, Massot P, Franconi JM, Pollesello P et al (2010) Absence of mitochondrial activation during levosimendan inotropic action in perfused paced guinea pig hearts as demonstrated by modular control analysis. Am J Physiol Regul Integr Comp Physiol 299(3):R786–R792. Pubmed Central PMCID: 3.1. Epub 2010/07/02. eng

    Article  CAS  PubMed  Google Scholar 

  26. Calmettes G, Deschodt-Arsac V, Thiaudiere E, Muller B, Diolez P (2008) Modular control analysis of effects of chronic hypoxia on mouse heart. Am J Physiol Regul Integr Comp Physiol 295(6):R1891–R1897. Epub 2008/10/04. eng

    Article  CAS  PubMed  Google Scholar 

  27. Calmettes G, Deschodt-Arsac V, Gouspillou G, Miraux S, Muller B, Franconi J-M et al (2010) Improved energy supply regulation in chronic hypoxic mouse counteracts hypoxia-induced altered cardiac energetics. PLoS One 5(2):e9306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Korzeniewski B, Noma A, Matsuoka S (2005) Regulation of oxidative phosphorylation in intact mammalian heart in vivo. Biophys Chem 116(2):145–157

    Article  CAS  PubMed  Google Scholar 

  29. Kavanagh NI, Ainscow EK, Brand MD (2000) Calcium regulation of oxidative phosphorylation in rat skeletal muscle mitochondria. Biochim Biophys Acta 1457(1-2):57–70

    Article  CAS  PubMed  Google Scholar 

  30. Johnston JD, Brand MD (1987) Stimulation of the respiration rate of rat liver mitochondria by sub-micromolar concentrations of extramitochondrial Ca2+. Biochem J 245(1):217–222. Pubmed Central PMCID: 1148102. Epub 1987/07/01. eng

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mildaziene V, Baniene R, Nauciene Z, Marcinkeviciute A, Morkuniene R, Borutaite V et al (1996) Ca2+ stimulates both the respiratory and phosphorylation subsystems in rat heart mitochondria. Biochem J 320(Pt 1):329–334. Pubmed Central PMCID: 1217935. Epub 1996/11/15. eng

    Article  CAS  PubMed  Google Scholar 

  32. Deschodt-Arsac V, Calmettes G, Gouspillou G, Chapolard M, Raffard G, Rouland R et al (2013) Non-invasive integrative analysis of contraction energetics in intact beating heart. Int J Biochem Cell Biol 45(1):4–10

    Article  CAS  PubMed  Google Scholar 

  33. Wu ST, Kojima S, Parmley WW, Wikman-Coffelt J (1992) Relationship between cytosolic calcium and oxygen consumption in isolated rat hearts. Cell Calcium 13(4):235–247

    Article  CAS  PubMed  Google Scholar 

  34. Endoh M (2006) Signal transduction and Ca2+ signaling in intact myocardium. J Pharmacol Sci 100(5):525–537. Epub 2006/06/27. eng

    Article  CAS  PubMed  Google Scholar 

  35. Farmakis D, Agostoni P, Baholli L, Bautin A, Comin-Colet J, Crespo-Leiro MG et al (2019) A pragmatic approach to the use of inotropes for the management of acute and advanced heart failure: An expert panel consensus. Int J Cardiol 297:83–90

    Article  PubMed  Google Scholar 

  36. Delgado JF (2006) Levosimendan in acute heart failure: past, present and future. Rev Esp Cardiol 59(4):309–312

    Article  PubMed  Google Scholar 

  37. Papp Z, Csapo K, Pollesello P, Haikala H, Edes I (2005) Pharmacological mechanisms contributing to the clinical efficacy of levosimendan. Cardiovasc Drug Rev 23(1):71–98

    Article  CAS  PubMed  Google Scholar 

  38. Pollesello P, Ovaska M, Kaivola J, Tilgmann C, Lundstrom K, Kalkkinen N et al (1994) Binding of a new Ca2+ sensitizer, levosimendan, to recombinant human cardiac troponin C. A molecular modelling, fluorescence probe, and proton nuclear magnetic resonance study. J Biol Chem 269(46):28584–28590

    Article  CAS  PubMed  Google Scholar 

  39. Sorsa T, Pollesello P, Solaro RJ (2004) The contractile apparatus as a target for drugs against heart failure: interaction of levosimendan, a calcium sensitiser, with cardiac troponin c. Mol Cell Biochem 266(1-2):87–107

    Article  CAS  PubMed  Google Scholar 

  40. Edes I, Kiss E, Kitada Y, Powers FM, Papp JG, Kranias EG et al (1995) Effects of Levosimendan, a cardiotonic agent targeted to troponin C, on cardiac function and on phosphorylation and Ca2+ sensitivity of cardiac myofibrils and sarcoplasmic reticulum in Guinea pig heart. Circ Res 77(1):107–113

    Article  CAS  PubMed  Google Scholar 

  41. Haikala H, Linden IB (1995) Mechanisms of action of calcium-sensitizing drugs. J Cardiovasc Pharmacol 26(Suppl 1):S10–S19

    Article  CAS  PubMed  Google Scholar 

  42. Szilagyi S, Pollesello P, Levijoki J, Haikala H, Bak I, Tosaki A et al (2005) Two inotropes with different mechanisms of action: contractile, PDE-inhibitory and direct myofibrillar effects of levosimendan and enoximone. J Cardiovasc Pharmacol 46(3):369–376. Epub 2005/08/24. eng

    Article  CAS  PubMed  Google Scholar 

  43. Pan J, Yang YM, Zhu JY, Lu YQ (2019) Multiorgan drug action of Levosimendan in critical illnesses. Biomed Res Int 2019:9731467

    PubMed  PubMed Central  Google Scholar 

  44. Pineda-Sanabria SE, Robertson IM, Sun YB, Irving M, Sykes BD (2016) Probing the mechanism of cardiovascular drugs using a covalent levosimendan analog. J Mol Cell Cardiol 92:174–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Deschodt-Arsac V, Calmettes G, Gouspillou G, Rouland R, Thiaudiere E, Miraux S et al (2010) System analysis of the effect of various drugs on cardiac contraction energetics. Biochem Soc Trans 38(5):1319–1321. Pubmed Central PMCID: 3.4. Epub 2010/09/25. eng

    Article  CAS  PubMed  Google Scholar 

  46. Pagel PS, Hettrick DA, Warltier DC (1996) Comparison of the effects of levosimendan, pimobendan, and milrinone on canine left ventricular-arterial coupling and mechanical efficiency. Basic Res Cardiol 91(4):296–307

    Article  CAS  PubMed  Google Scholar 

  47. Gouspillou G, Rouland R, Calmettes G, Deschodt-Arsac V, Franconi JM, Bourdel-Marchasson I et al (2011) Accurate determination of the oxidative phosphorylation affinity for ADP in isolated mitochondria. PLoS One 6(6):e20709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lefrancois W, Miraux S, Calmettes G, Pourtau L, Franconi JM, Diolez P et al (2011) A fast black-blood sequence for four-dimensional cardiac manganese-enhanced MRI in mouse. NMR Biomed 24(3):291–298

    Article  PubMed  Google Scholar 

  49. Kaheinen P, Pollesello P, Levijoki J, Haikala H (2004) Effects of levosimendan and milrinone on oxygen consumption in isolated Guinea-pig heart. J Cardiovasc Pharmacol 43(4):555–561

    Article  CAS  PubMed  Google Scholar 

  50. Nicholls DG, Ferguson SJ (2013) Bioenergetics, 4th edn. Academic Press, London

    Google Scholar 

  51. Brand MD (1997) Regulation analysis of energy metabolism. J Exp Biol 200(Pt 2):193–202

    Article  CAS  PubMed  Google Scholar 

  52. Ainscow EK, Brand MD (1999) Quantifying elasticity analysis: how external effectors cause changes to metabolic systems. Biosystems 49:151–159

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks G. Raffard and R. Rouland for their technical help and Y. Chatenet for 3D drawings (Figs. 2, 3, 5, and 6).

Funding: Part of this work has been supported by the “Association Française contre les Myopathies” (grant #AFM 12338), CNRS (P. Diolez salary) and the French Government as part of the “investments for the future” program managed by the National Research Agency (ANR), Grant reference ANR-10- IAHU-04 IHU-LIRYC (Université de Bordeaux).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Diolez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Diolez, P. et al. (2021). Integrative Methods for Studying Cardiac Energetics. In: Weissig, V., Edeas, M. (eds) Mitochondrial Medicine. Methods in Molecular Biology, vol 2277. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1270-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1270-5_25

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1269-9

  • Online ISBN: 978-1-0716-1270-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics