Skip to main content

Bioenergetic Profiling of Human Pluripotent Stem Cells

  • Protocol
  • First Online:
Mitochondrial Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2277))

  • 1995 Accesses

Abstract

Cellular metabolism contributes to cell fate decisions. Bioenergetic profiling can therefore provide considerable insights into cellular identity and specification. Given the current importance of human pluripotent stem cells (hPSCs) for biomedical applications, assessing the bioenergetic properties of hPSCs and derivatives can unveil relevant mechanisms in the context of development biology and molecular disease modeling. Here, we describe a method to facilitate bioenergetic profiling of hPSCs in a reproducible and scalable manner. After simultaneous assessment of mitochondrial respiration and glycolytic capacity using Seahorse XFe96 Analyzer, we measure lactate concentration in the cellular media. Finally, we normalize the values based on DNA amount. We describe the procedures with specific requirements related to hPSCs . However, the same protocol can be easily adapted to other cell types, including differentiated progenies from hPSCs .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156

    Article  CAS  Google Scholar 

  2. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  Google Scholar 

  3. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 26(4):663–676

    Article  Google Scholar 

  4. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  Google Scholar 

  5. Lisowski P, Kannan P, Mlody B, Prigione A (2018) Mitochondria and the dynamic control of stem cell homeostasis. EMBO Rep 19(5):4067162

    Article  Google Scholar 

  6. Xu X, Duan S, Yi F, Ocampo A, Liu GH, Izpisua Belmonte JC (2013) Mitochondrial regulation in pluripotent stem cells. Cell Metab 18(3):325–332

    Article  CAS  Google Scholar 

  7. Lorenz C, Lesimple P, Bukowiecki R, Zink A, Inak G, Mlody B et al (2017) Human iPSC-derived neural progenitors are an effective drug discovery model for neurological mtDNA disorders. Cell Stem Cell 20(5):659–74 e9

    Article  CAS  Google Scholar 

  8. Zheng X, Boyer L, Jin M, Mertens J, Kim Y, Ma L et al (2016) Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation. Elife 5

    Google Scholar 

  9. Avior Y, Sagi I, Benvenisty N (2016) Pluripotent stem cells in disease modelling and drug discovery. Nat Rev Mol Cell Biol 17(3):170–182

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors declare no competing financial or commercial interests and acknowledge support from the German Federal Ministry of Education and Research (BMBF) (#AZ.031A318 and #031L0211), the University Hospital Düsseldorf (Forschungskommission UKD), the United Mitochondrial Disease Foundation (UMDF), and the Deutsche Forschungsgemeinschaft (DFG) (PR1527/5-1). (#AZ.031A318 and #031L0211), the University Hospital Düsseldorf (Forschungskommission UKD), the United Mitochondrial Disease Foundation (UMDF), and the Deutsche Forschungsgemeinschaft (DFG) (PR1527/5-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Prigione .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Inak, G., Henke, MT., Prigione, A. (2021). Bioenergetic Profiling of Human Pluripotent Stem Cells. In: Weissig, V., Edeas, M. (eds) Mitochondrial Medicine. Methods in Molecular Biology, vol 2277. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1270-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1270-5_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1269-9

  • Online ISBN: 978-1-0716-1270-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics