Skip to main content

Single-Cell Approaches for Studying the Role of Mitochondrial DNA in Neurodegenerative Disease

  • Protocol
  • First Online:
Mitochondrial Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2277))

Abstract

In light of accumulating evidence suggestive of cell type-specific vulnerabilities as a result of normal aging processes that adversely affect the brain, as well as age-related neurodegenerative disorders such as Parkinson’s disease (PD), the current chapter highlights how we study mitochondrial DNA (mtDNA) changes at a single-cell level. In particular, we comment on increasing questioning of the narrow neurocentric view of such pathologies, where microglia and astrocytes have traditionally been considered bystanders rather than players in related pathological processes. Here we review the contribution made by single-cell mtDNA alterations towards neuronal vulnerability seen in neurodegenerative disorders, focusing on PD as a prominent example. In addition, we give an overview of methodologies that support such experimental investigations. In considering the significant advances that have been made in recent times for developing mitochondria-specific therapies, investigations to account for cell type-specific mitochondrial patterns and how these are altered by disease hold promise for delivering more effective disease-modifying therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

α-SYN:

α-synuclein

ACh:

acetylcholine

ATP:

adenosine triphosphate

ChAT:

choline acetyltransferase

CN:

copy number

CT:

cycle threshold

COX:

cytochrome c oxidase

DBS:

deep-brain stimulation

DMSO:

dimethyl sulfoxide

D:

displacement

ddPCR:

digital droplet PCR

DAT:

dopamine transporter

ETC:

electron transport chain

EtBr:

ethidium bromide

H&E:

hematoxylin and eosin

H:

heavy

HRP:

horseradish peroxidase

5-HT:

5-hydroxytryptamine

LCM:

laser capture microdissection

LBs:

Lewy bodies

LNs:

Lewy neurites

L:

light

LC-RNA:

light- (or lagging-) strand

LC:

locus coeruleus

LFB:

Luxol Fast Blue

MPP+:

1-methyl-4-phenylpyridinium

mt:

mitochondrial

NCR:

noncoding regions

NE:

norepinephrine

OXPHOS:

oxidative phosphorylation

PPN:

pedunculopontine nucleus

PBS:

phosphate-buffered saline

POLG:

polymerase γ

RMC:

random mutation capture

ROI:

region of interest

ROS:

reactive oxygen species

rRNA:

ribosomal RNA

RT:

room temperature

SNPs:

single nucleotide polymorphisms

SNpc:

substantia nigra pars compacta

STN:

subthalamic nucleus

TMB:

3,3′,5,5′-Tetramethylbenzidine

TFAM:

transcription factor A, mitochondrial

tRNA:

transfer RNA

TBS:

tris-buffered saline

VEGF:

vascular endothelial growth factor

w/t:

wild-type

References

  1. Martin WF, Garg S, Zimorski V (2015) Endosymbiotic theories for eukaryote origin. Philos Trans R Soc Lond Ser B Biol Sci 370:20140330

    Article  CAS  Google Scholar 

  2. Papa S, Martino PL, Capitanio G et al (2012) The oxidative phosphorylation system in mammalian mitochondria. Adv Exp Med Biol 942:3–37

    Article  CAS  PubMed  Google Scholar 

  3. Raule N, Sevini F, Li S et al (2014) The co-occurrence of mtDNA mutations on different oxidative phosphorylation subunits, not detected by haplogroup analysis, affects human longevity and is population specific. Aging Cell 13:401–407

    Article  CAS  PubMed  Google Scholar 

  4. Gómez-Durán A, Pacheu-Grau D, López-Gallardo E et al (2010) Unmasking the causes of multifactorial disorders: OXPHOS differences between mitochondrial haplogroups. Hum Mol Genet 19:3343–3353

    Article  PubMed  CAS  Google Scholar 

  5. Lapkouski M, Hällberg BM (2015) Structure of mitochondrial poly(a) RNA polymerase reveals the structural basis for dimerization, ATP selectivity and the SPAX4 disease phenotype. Nucleic Acids Res 43:9065–9075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kasamatsu H, Robberson DL, Vinograd J (1971) A novel closed-circular mitochondrial DNA with properties of a replicating intermediate. Proc Natl Acad Sci U S A 68:2252–2257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nicholls TJ, Minczuk M (2014) In D-loop: 40 years of mitochondrial 7S DNA. Exp Gerotol 56:175–181

    Article  CAS  Google Scholar 

  8. He J, Mao C-C, Reyes A et al (2007) The AAA+ protein ATAD3 has displacement loop binding properties and is involved in mitochondrial nucleoid organization. J Cell Biol 176:141–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Antes A, Tappin I, Chung S et al (2010) Differential regulation of full-length genome and a single-stranded 7S DNA along the cell cycle in human mitochondria. Nucleic Acids Res 38:6466–6476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Annex BH, Williams RS (1990) Mitochondrial DNA structure and expression in specialized subtypes of mammalian striated muscle. Mol Cell Biol 10:5671–5567

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Reyes A, Rusecka J, Tońska K et al (2020) RNase H1 regulates mitochondrial transcription and translation via the degradation of 7S RNA. Front Genet 10:1393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Akman G, Desai R, Bailey LJ et al (2016) Pathological ribonuclease H1 causes R-loop depletion and aberrant DNA segregation in mitochondria. Proc Natl Acad Sci U S A 113:E4276–E4285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Fusté JM, Wanrooij S, Jemt E et al (2010) Mitochondrial RNA polymerase is needed for activation of the origin of light-strand DNA replication. Mol Cell 37:67–78

    Article  PubMed  CAS  Google Scholar 

  14. Wanrooij S, Fusté JM, Farge G et al (2008) Human mitochondrial RNA polymerase primes lagging-strand DNA synthesis in vitro. Proc Natl Acad Sci U S A 105:11122–11127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Raha S, Robinson BH (2000) Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci 25:502–508

    Article  CAS  PubMed  Google Scholar 

  16. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Article  CAS  PubMed  Google Scholar 

  17. Tuppen HA, Blakely EL, Turnbull DM et al (2010) Mitochondrial DNA mutations and human disease. Biochim Biophys Acta 1797:113–128

    Article  CAS  PubMed  Google Scholar 

  18. Kadenbach B, Münscher C, Frank V et al (1995) Human aging is associated with stochastic somatic mutations of mitochondrial DNA. Mutat Res 338:161–172

    Article  CAS  PubMed  Google Scholar 

  19. Khrapko K, Turnbull D (2014) Mitochondrial DNA mutations in aging. Prog Mol Biol Transl Sci 127:29–62

    Article  PubMed  Google Scholar 

  20. Elson JL, Samuels DC, Turnbull DM et al (2001) Random intracellular drift explains the clonal expansion of mitochondrial DNA mutations with age. Am J Hum Genet 68:802–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chinnery PF, Samuels DC, Elson JL et al (2002) Accumulation of mitochondrial DNA mutations in ageing, cancer, and mitochondrial disease: is there a common mechanism? Lancet 360:1323–1325

    Article  CAS  PubMed  Google Scholar 

  22. Kowald A, Kirkwood TBL (2018) Resolving the enigma of the clonal expansion of mtDNA deletions. Genes (Basel) 9:126

    Article  CAS  Google Scholar 

  23. Moustafa AA, Chakravarthy S, Phillips JR et al (2016) Motor symptoms in Parkinson’s disease: a unified framework. Neurosci Biobehav Rev 68:727–740

    Article  PubMed  Google Scholar 

  24. Balestrino R, Martinez-Martin P (2017) Neuropsychiatric symptoms, behavioural disorders, and quality of life in Parkinson’s disease. J Neurol Sci 373:173–178

    Article  PubMed  Google Scholar 

  25. Alexander GE (2004) Biology of Parkinson’s disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dialogues Clin Neurosci 6:259–280

    Article  PubMed  PubMed Central  Google Scholar 

  26. Trojanowski JQ, Goedert M, Iwatsubo T et al (1998) Fatal attractions: abnormal protein aggregation and neuron death in Parkinson’s disease and Lewy body dementia. Cell Death Differ 5:832–837

    Article  CAS  PubMed  Google Scholar 

  27. Braak H, Del Tredici K, Rüb U et al (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  28. Hansen C, Angot E, Bergström A-L et al (2011) α-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J Clin Invest 121:715–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Desplats P, Lee HJ, Bae EJ et al (2009) Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci U S A 106:13010–13015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Luk KC, Song C, O’Brien P et al (2009) Exogenous alpha-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proc Natl Acad Sci U S A 106:20051–20056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Luk KC, Kehm V, Carroll J et al (2012) Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in non-transgenic mice. Science 338:949–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mesulam MM, Mufson EJ, Wainer BH et al (1983) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience 10:1185–1201

    Article  CAS  PubMed  Google Scholar 

  33. Rinne JO, Ma SY, Lee MS et al (2008) Loss of cholinergic neurons in the pedunculopontine nucleus in Parkinson’s disease is related to disability of the patients. Parkinsonism Relat Disord 14:553–557

    Article  PubMed  Google Scholar 

  34. Pienaar IS, Elson JL, Racca C et al (2013) Mitochondrial abnormality associates with type-specific neuronal loss and cell morphology changes in the pedunculopontine nucleus in Parkinson disease. Am J Pathol 183:1826–1840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bury AG, Pyle A, Elson JL et al (2017) Mitochondrial DNA changes in pedunculopontine cholinergic neurons in Parkinson disease. Ann Neurol 82:1016–1021

    Article  CAS  PubMed  Google Scholar 

  36. Standaert D, Saper C, Rye D et al (1986) Colocalization of atriopeptin-like immunoreactivity with choline acetyltransferase- and substance—P-like immunoreactivity in the pedunculopontine and laterodorsal tegmental nuclei in the rat. Neuroscience 382:163–168

    CAS  Google Scholar 

  37. Austin M, Rice P, Mann J et al (1995) Localization of corticotropin-releasing hormone in the human locus coeruleus and pedunculopontine tegmental nucleus: an immunocytochemical and in situ hybridization study. Neuroscience 64:713–727

    Article  CAS  PubMed  Google Scholar 

  38. Mineff EM, Popratiloff A, Romansky R et al (1998) Evidence for a possible glycinergic inhibitory neurotransmission in the midbrain and rostral pons of the rat studied by gephyrin. Arch Physiol Biochem 106:210–220

    Article  CAS  PubMed  Google Scholar 

  39. Wang HI, Morales M (2009) Pedunculopontine and laterodorsal tegmental nuclei contain distinct populations of cholinergic, glutamatergic, and GABAergic neurons in the rat. Eur J Neurosci 29:340–358

    Article  PubMed  Google Scholar 

  40. Martinez-Gonzalez C, Wang HL, Micklem BR et al (2012) Subpopulations of cholinergic, GABAergic and glutamatergic neurons in the pedunculopontine nucleus contain calcium-binding proteins and are heterogeneously distributed. Eur J Neurosci 35:723–734

    Article  PubMed  Google Scholar 

  41. Pienaar IS, van de Berg W (2013) A non-cholinergic neuronal loss in the pedunculopontine nucleus of toxin-evoked parkinsonian rats. Exp Neurol 248:213–223

    Article  CAS  PubMed  Google Scholar 

  42. D’Onofrio S, Kezunovic N, Hyde JR et al (2015) Modulation of gamma oscillations in the pedunculopontine nucleus by neuronal calcium sensor protein-1: relevance to schizophrenia and bipolar disorder. J Neurophysiol 113:709–719

    Article  PubMed  CAS  Google Scholar 

  43. Gutt NK, Winn P (2016) The pedunculopontine tegmental nucleus-a functional hypothesis from the comparative literature. Mov Disord 31:615–624

    Article  Google Scholar 

  44. Jiang H, Song N, Jiao Q et al (2019) Iron pathophysiology in Parkinson’s disease. Adv Exp Med Biol 1173:45–66

    Article  CAS  PubMed  Google Scholar 

  45. Lewis FW, Fairooz S, Elson JL et al (2020) Novel 1-hydroxypyridin-2-one metal chelators prevent and rescue ubiquitin proteasomal-related neuronal injury in an in vitro model of Parkinson’s disease. Arch Toxicol 94:813–831

    Article  CAS  PubMed  Google Scholar 

  46. Mochizuki H, Choong CJ, Baba K (2020) Parkinson’s disease and iron. J Neural Transm 127:181–187

    Article  PubMed  Google Scholar 

  47. Shamoto-Nagai M, Maruyama W, Yi H et al (2006) Neuromelanin induces oxidative stress in mitochondria through release of iron: mechanism behind the inhibition of 26S proteasome. J Neural Transm 113:633–644

    Article  CAS  PubMed  Google Scholar 

  48. Zecca L, Stroppolo A, Gatti A et al (2004) The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Proc Natl Acad Sci U S A 101:9843–9848

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Zucca FA, Bellei C, Giannelli S et al (2006) Neuromelanin and iron in human locus coeruleus and substantia nigra during aging: consequences for neuronal vulnerability. J Neural Transm 113:757–767

    Article  CAS  PubMed  Google Scholar 

  50. Pienaar IS, Lee CH, Elson JL et al (2015) Deep-brain stimulation associates with improved microvascular integrity in the subthalamic nucleus in Parkinson’s disease. Neurobiol Dis 74:392–405

    Article  PubMed  Google Scholar 

  51. Booth HDE, Hirst WD, Wade-Martins R (2017) The role of astrocyte dysfunction in Parkinson’s disease pathogenesis. Trends Neurosci 40:358–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35

    Article  PubMed  Google Scholar 

  53. Zhang Y, Sloan SA, Clarke LE et al (2016) Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89:37–53

    Article  CAS  PubMed  Google Scholar 

  54. Streit WJ, Mrak RE, Griffin WST (2004) Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation 1:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Gelders G, Baekelandt V, Van der Perren A (2018) Linking neuroinflammation and neurodegeneration in Parkinson’s disease. J Immunol Res 2018:4784268–4784212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. George S, Rey NL, Tyson T et al (2019) Microglia affect α-synuclein cell-to-cell transfer in a mouse model of Parkinson’s disease. Mol Neurodegener 14:34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Ballard PA, Tetrad JW, Langston JW (1985) Permanent human parkinsonism due to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): seven cases. Neurology 35:949–956

    Article  CAS  PubMed  Google Scholar 

  58. Choi SJ, Panhelainen A, Schmitz Y et al (2015) Changes in neuronal dopamine homeostasis following 1-methyl-4-phenylpyridinium (MPP+) exposure. J Biol Chem 290:6799–6809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nicklas WJ, Vyas I, Heikkila RE (1985) Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci 36:2503–2508

    Article  CAS  PubMed  Google Scholar 

  60. Javitch JA, D'Amato RJ, Strittmatter SM et al (1985) Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc Natl Acad Sci U S A 82:2173–2177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gainetdinov RR, Fumagalli F, Jones SR et al (1997) Dopamine transporter is required for in vivo MPTP neurotoxicity: evidence from mice lacking the transporter. J Neurochem 69:1322–1325

    Article  CAS  PubMed  Google Scholar 

  62. Martí Y, Matthaeus F, Lau T et al (2017) Methyl-4-phenylpyridinium (MPP+) differential affects monoamine release and reuptake in murine embryonic stem cell-derived dopaminergic and serotonergic neurons. Mol Cell Neurosci 83:37–45

    Article  PubMed  CAS  Google Scholar 

  63. Shannak K, Rajput A, Rozdilsky B et al (1994) Noradrenaline, dopamine and serotonin levels and metabolism in the human hypothalamus: observations in Parkinson’s disease and normal subjects. Brain Res 639:33–41

    Article  CAS  PubMed  Google Scholar 

  64. Kish SJ, Tong J, Hornykiewicz O et al (2008) Preferential loss of serotonin markers in caudate versus putamen in Parkinson’s disease. Brain 131:120–131

    PubMed  Google Scholar 

  65. Schapira AHV, Cooper JM, Dexter D et al (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54:823–827

    Article  CAS  PubMed  Google Scholar 

  66. Krueger MJ, Singer TP, Casida JE et al (1990) Evidence that the blockade of mitochondrial respiration by the neurotoxin 1-methyl-4-phenylpyridinium (MPP+) involves binding at the same site as the respiratory inhibitor, rotenone. Biochem Biophys Res Commun 169:123–128

    Article  CAS  PubMed  Google Scholar 

  67. Sherer TB, Betarbet R, Testa CM et al (2003) Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci 23:10756–10764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Betarbet R, Sherer TB, McKenzie G et al (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306

    Article  CAS  PubMed  Google Scholar 

  69. Hudson G, Nalls M, Evans JR et al (2013) Two-stage association study and meta-analysis of mitochondrial DNA variants in Parkinson disease. Neurology 80:2042–2048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pyle A, Anugrha H, Kurzawa-Akanbi M et al (2016) Reduced mitochondrial DNA copy number is a biomarker of Parkinson’s disease. Neurobiol Aging 38:216.e7–216.e10

    Article  CAS  Google Scholar 

  71. Schapira AH (2008) Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol 7:97–109

    Article  CAS  PubMed  Google Scholar 

  72. Schapira AH, Cooper JM, Dexter D et al (1989) Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1:1269

    Article  CAS  PubMed  Google Scholar 

  73. Parker WD Jr, Boyson SJ, Parks JK (1989) Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol 26:719–723

    Article  PubMed  Google Scholar 

  74. Mizuno Y, Ohta S, Tanaka M et al (1989) Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease. Biochem Biophys Res Commun 163:1450–1455

    Article  CAS  PubMed  Google Scholar 

  75. Coppede F, Migliore L (2015) DNA damage in neurodegenerative diseases. Mutat Res 776:84–97

    Article  CAS  PubMed  Google Scholar 

  76. Swerdlow RH, Parks JK, Miller SW et al (1996) Origin and functional consequences of the complex I defect in Parkinson’s disease. Ann Neurol 40:663–671

    Article  CAS  PubMed  Google Scholar 

  77. Kraytsberg Y, Kudryavtseva E, McKee AC et al (2006) Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet 38:518–520

    Article  CAS  PubMed  Google Scholar 

  78. Yao Z, Wood NW (2009) Cell death pathways in Parkinson’s disease: role of mitochondria. Antioxid Redox Signal 11:2135–2149

    Article  CAS  PubMed  Google Scholar 

  79. Bender A, Krishnan KJ, Morris CM et al (2006) High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 38:515–517

    Article  CAS  PubMed  Google Scholar 

  80. Coxhead J, Kurzawa-Akanbi M, Hussain R et al (2015) Somatic mtDNA variation is an important component of Parkinson’s disease. Neurobiol Aging 38:217.e1–217.e6

    Article  CAS  Google Scholar 

  81. Dölle C, Flønes I, Nido GS et al (2016) Defective mitochondrial DNA homeostasis in the substantia nigra in Parkinson disease. Nat Commun 7:13548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Müller-Nedebock AC, Brennan RR, Venter M et al (2019) The unresolved role of mitochondrial DNA in Parkinson’s disease: an overview of published studies, their limitations, and future prospects. Neurochem Int 129:104495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Ekstrand MI, Terzioglu M, Galter D et al (2007) Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons. Proc Natl Acad Sci U S A 104:1325–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Müller SK, Bender A, Laub C et al (2013) Lewy body pathology is associated with mitochondrial DNA damage in Parkinson’s disease. Neurobiol Aging 34:2231–2233

    Article  PubMed  CAS  Google Scholar 

  85. Neuhaus JFG, Baris OR, Hess S et al (2014) Catecholamine metabolism drives generation of mitochondrial DNA deletions in dopaminergic neurons. Brain 137:354–365

    Article  PubMed  Google Scholar 

  86. Weissig V (2020) Drug development for the therapy of mitochondrial diseases. Trends Mol Med 26:40–57

    Article  CAS  PubMed  Google Scholar 

  87. Guyatt AL, Brennan RR, Burrows K et al (2019) A genome-wide association study of mitochondrial DNA copy number in two population-based cohorts. Hum Genomics 13:6

    Article  PubMed  PubMed Central  Google Scholar 

  88. Grady JP, Murphy JL, Blakely EL et al (2014) Accurate measurement of mitochondrial DNA deletion level and copy number differences in human skeletal muscle. PLoS One 9:e114462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Reeve AK, Krishnan KJ, Turnbull DM (2008) Age related mitochondrial degenerative disorders in humans. J Biotecnol 3:750–756

    Article  CAS  Google Scholar 

  90. Damas J, Samuels DC, Carneiro J et al (2014) Mitochondrial DNA rearrangements in health and disease – a comprehensive study. Hum Mutat 35:1–14

    Article  CAS  PubMed  Google Scholar 

  91. Belmonte FR, Martin JL, Frescura K et al (2016) Digital PCR methods improve detection sensitivity and measurement precision of low abundance mtDNA deletions. Sci Rep 6:25186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. He L, Chinnery PF, Durham SE et al (2002) Detection and quantification of mitochondrial DNA deletions in individual cells by real-time PCR. Nucleic Acids Res 30:e68

    Article  PubMed  PubMed Central  Google Scholar 

  93. Vermulst M, Bielas JH, Loeb LA (2008) Quantification of random mutations in the mitochondrial genome. Methods 46:263–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sanders LH, Rouanet JP, Howlett EH et al (2018) Newly revised protocol for quantitative PCR-based assay to measure mitochondrial and nuclear DNA damage. Curr Protoc Toxicol 76:e50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilse S. Pienaar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bailey, L.J., Elson, J.L., Pienaar, I.S. (2021). Single-Cell Approaches for Studying the Role of Mitochondrial DNA in Neurodegenerative Disease. In: Weissig, V., Edeas, M. (eds) Mitochondrial Medicine. Methods in Molecular Biology, vol 2277. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1270-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1270-5_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1269-9

  • Online ISBN: 978-1-0716-1270-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics