Skip to main content

Live-Cell Fluorescence Imaging of Microtubules by Using a Tau-Derived Peptide

  • Protocol
  • First Online:
Live Cell Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2274))

Abstract

Microtubules (MTs) are important targets for imaging in living cells because of their vital roles in cellular processes. The dynamics (polymerization/depolymerization) of MTs has been imaged in living cells by utilizing MT-targeted drugs as scaffolds. We previously developed a unique MT-binding motif derived from a MT-associated protein, Tau. The Tau-derived peptide (TP) binds to the inner surface of MTs without inhibiting the dynamics of MTs. We introduce a new protocol for live-cell imaging of MTs by using fluorescently labeled TP. We exemplify that tetramethylrhodamine (TMR)-labeled TP (TP-TMR) is spontaneously internalized into HepG2 cells and binds to intracellular MTs, enabling visualization of MTs in living cells. TP-TMR shows no apparent effects on polymerization/depolymerization of MTs and no cytotoxicity. Thus, the peptide-based approach is useful for long-term imaging of MTs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hess H, Ross JL (2017) Non-equilibrium assembly of microtubules: from molecules to autonomous chemical robots. Chem Soc Rev 46:5570–5587

    Article  CAS  Google Scholar 

  2. Sahl SJ, Hell SW, Jakobs S (2017) Fluorescence nanoscopy in cell biology. Nat Rev Mol Cell Biol 18:685–701

    Article  CAS  Google Scholar 

  3. Zwetsloot AJ, Tut G, Straube A (2018) Measuring microtubule dynamics. Essays Biochem 62:725–735

    Article  Google Scholar 

  4. Wang L, Frei MS, Salim A, Johnsson K (2019) Small-molecule fluorescent probes for live-cell super-resolution microscopy. J Am Chem Soc 141:2770–2781

    Article  CAS  Google Scholar 

  5. Souto AA, Acuña AU, Andreu JM et al (1996) New fluorescent water-soluble taxol derivatives. Angew Chem Int Ed Engl 34:2710–2712

    Article  Google Scholar 

  6. Guy R, Scott Z, Sloboda R, Nicolaou K (1996) Fluorescent taxoids. Chem Biol 3:1021–1031

    Article  CAS  Google Scholar 

  7. Evangelio JA, Abal M, Barasoain I et al (1998) Fluorescent taxoids as probes of the microtubule cytoskeleton. Cell Motil Cytoskeleton 39:73–90

    Article  CAS  Google Scholar 

  8. Devaraj NK, Hilderbrand S, Upadhyay R et al (2010) Bioorthogonal turn-on probes for imaging small molecules inside living cells. Angew Chem Int Ed Engl 49:2869–2872

    Article  CAS  Google Scholar 

  9. Lukinavičius G, Reymond L, D’Este E et al (2014) Fluorogenic probes for live-cell imaging of the cytoskeleton. Nat Methods 11:731–733

    Article  Google Scholar 

  10. Lukinavičius G, Reymond L, Umezawa K et al (2016) Fluorogenic probes for multicolor imaging in living cells. J Am Chem Soc 138:9365–9368

    Article  Google Scholar 

  11. Lee MM, Gao Z, Peterson BR (2017) Synthesis of a fluorescent analogue of paclitaxel that selectively binds microtubules and sensitively detects efflux by P-glycoprotein. Angew Chem Int Ed Engl 56:6927–6931

    Article  CAS  Google Scholar 

  12. Butkevich AN, Ta H, Ratz M et al (2018) Two-color 810 nm STED nanoscopy of living cells with endogenous SNAP-tagged fusion proteins. ACS Chem Biol 13:475–480

    Article  CAS  Google Scholar 

  13. Lukinavičius G, Mitronova GY, Schnorrenberg S et al (2018) Fluorescent dyes and probes for super-resolution microscopy of microtubules and tracheoles in living cells and tissues. Chem Sci 9:3324–3334

    Article  Google Scholar 

  14. Zhang H, Wang C, Jiang T et al (2015) Microtubule-targetable fluorescent probe: site-specific detection and super-resolution imaging of ultratrace tubulin in microtubules of living cancer cells. Anal Chem 87:5216–5222

    Article  CAS  Google Scholar 

  15. Hamley IW (2017) Small bioactive peptides for biomaterials design and therapeutics. Chem Rev 117:14015–14041

    Article  CAS  Google Scholar 

  16. Zhang P, Cui Y, Anderson CF et al (2018) Peptide-based nanoprobes for molecular imaging and disease diagnostics. Chem Soc Rev 47:3490–3529

    Article  CAS  Google Scholar 

  17. Qi G-B, Gao Y-J, Wang L, Wang H (2018) Self-assembled peptide-based nanomaterials for biomedical imaging and therapy. Adv Mater 30:1703444

    Article  Google Scholar 

  18. Tsutsumi H, Mihara H (2013) Soft materials based on designed self-assembling peptides: from design to application. Mol BioSyst 9:609–617

    Article  CAS  Google Scholar 

  19. Inaba H, Matsuura K (2019) Peptide nanomaterials designed from natural supramolecular systems. Chem Rec 19:843–858

    Article  CAS  Google Scholar 

  20. Inaba H, Yamamoto T, Kabir AMR et al (2018) Molecular encapsulation inside microtubules based on Tau-derived peptides. Chem Eur J 24:14958–14967

    Article  CAS  Google Scholar 

  21. Inaba H, Yamamoto T, Iwasaki T et al (2019) Stabilization of microtubules by encapsulation of the GFP using a Tau-derived peptide. Chem Commun 55:9072–9075

    Article  CAS  Google Scholar 

  22. Inaba H, Yamamoto T, Iwasaki T et al (2019) Fluorescent Tau-derived peptide for monitoring microtubules in living cells. ACS Omega 4:11245–11250

    Article  CAS  Google Scholar 

  23. Inaba H, Nagata M, Miyake KJ et al (2020) Cyclic Tau-derived peptides for stabilization of microtubules. Polym J 52:1143–1151. https://doi.org/10.1038/s41428-020-0356-3

  24. Dai Y, Whittal RM, Li L (1999) Two-layer sample preparation: a method for MALDI-MS analysis of complex peptide and protein mixtures. Anal Chem 71:1087–1091

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by KAKENHI (No. 17K14517 and 19K15699 for H.I.) from the Japan Society for the Promotion of Science (JSPS), the Inamori Foundation, and Konica Minolta Science and Technology Foundation for Konica Minolta Imaging Science Encouragement Award.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hiroshi Inaba or Kazunori Matsuura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Inaba, H., Matsuura, K. (2021). Live-Cell Fluorescence Imaging of Microtubules by Using a Tau-Derived Peptide. In: Kim, SB. (eds) Live Cell Imaging. Methods in Molecular Biology, vol 2274. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1258-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1258-3_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1257-6

  • Online ISBN: 978-1-0716-1258-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics