Skip to main content

Glycosylation of Therapeutic Proteins: A Critical Quality Attribute

  • Protocol
  • First Online:
Mass Spectrometry of Glycoproteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2271))

Abstract

Glycosylation is a common posttranslational modification of therapeutic proteins. The glycosylation pattern is dependent on many parameters such as the host cell line or the culture conditions. N- and O-linked glycans usually play a great role on the stability, safety, and efficacy of the drug. For this reason, glycosylation is considered as a critical quality attribute of therapeutic glycoproteins, and a thorough characterization should be performed, as well as a systematic control for each batch produced. This chapter gives a short presentation of the structure of glycans commonly found on recombinant therapeutic proteins, and their role on the properties of the drug, in terms of stability, pharmacokinetics, safety, and efficacy. Lastly, the use of mass spectrometry for the analysis of glycoproteins is briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evaluate Pharma (2019) World preview 2019, Outlook 2024

    Google Scholar 

  2. Industry Experts (2019) Biopharmaceuticals—A Global Market Overview

    Google Scholar 

  3. Apweiler R, Hermjakob H, Sharon N (1999) On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta 1473:4–8. https://doi.org/10.1016/s0304-4165(99)00165-8

    Article  CAS  PubMed  Google Scholar 

  4. Cymer F, Beck H, Rohde A, Reusch D (2017) Therapeutic monoclonal antibody N-glycosylation – structure, function and therapeutic potential. Biologicals 52:1–11. https://doi.org/10.1016/j.biologicals.2017.11.001

    Article  CAS  PubMed  Google Scholar 

  5. Urquhart L (2019) Top drugs and companies by sales in 2018. Nat Rev Drug Discov 18:245. https://doi.org/10.1038/d41573-019-00049-0

    Article  CAS  Google Scholar 

  6. Alt N, Zhang TY, Motchnik P et al (2016) Determination of critical quality attributes for monoclonal antibodies using quality by design principles. Biologicals 44:291–305. https://doi.org/10.1016/j.biologicals.2016.06.005

    Article  CAS  PubMed  Google Scholar 

  7. Xu Y, Wang D, Mason B et al (2019) Structure, heterogeneity and developability assessment of therapeutic antibodies. MAbs 11:239–264. https://doi.org/10.1080/19420862.2018.1553476

    Article  CAS  PubMed  Google Scholar 

  8. Beck A, Liu H (2019) Macro- and micro-heterogeneity of natural and recombinant IgG antibodies. Antibodies 8:18. https://doi.org/10.3390/antib8010018

    Article  CAS  PubMed Central  Google Scholar 

  9. Committee for Medicinal Products for Human Use (CHMP) - European Medicines Agency (2016) Guideline on development, production, Characterisation and specification for monoclonal antibodies and related products

    Google Scholar 

  10. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (1999) Guideline Q6B - Specifications: Test procedures and acceptance criteria for biotechnological/biological products

    Google Scholar 

  11. U. S. Department of Health and Human Services, − Food and Drug Administration (1997) Points to Consider in the Manufacture and Testing of Monoclonal Antibody Products for Human Use

    Google Scholar 

  12. Stick R, Williams SJ (2009) Carbohydrates: the essential molecules of life. Elsevier, Amsterdam

    Google Scholar 

  13. Wang T, Voglmeir J (2014) PNGases as valuable tools in glycoprotein analysis. Protein Pept Lett 21:976–985. https://doi.org/10.2174/0929866521666140626111237

    Article  CAS  PubMed  Google Scholar 

  14. Kobata A (2013) Exo- and endoglycosidases revisited. Proc Japan Acad Ser B Phys Biol Sci 89:97–117. https://doi.org/10.2183/pjab.89.97

    Article  CAS  Google Scholar 

  15. Goldenberg MM (1999) Etanercept, a novel drug for the treatment of patients with severe, active rheumatoid arthritis. Clin Ther 21:75–87. https://doi.org/10.1016/S0149-2918(00)88269-7

    Article  CAS  PubMed  Google Scholar 

  16. Zhang P, Wang T, Bardor M, Song Z (2013) Deciphering O-glycomics for the development and production of biopharmaceuticals. Pharm Bioprocess 1:89–104. https://doi.org/10.4155/pbp.13.7

    Article  CAS  Google Scholar 

  17. Yang W, Ao M, Hu Y et al (2018) Mapping the O-glycoproteome using site-specific extraction of O-linked glycopeptides (EXoO). Mol Syst Biol 14:e8486. https://doi.org/10.15252/msb.20188486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kuriakose A, Chirmule N, Nair P (2016) Immunogenicity of biotherapeutics: causes and association with posttranslational modifications. J Immunol Res 2016:1298473. https://doi.org/10.1155/2016/1298473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brooks SA (2004) Appropriate glycosylation of recombinant proteins for human use: implications of choice of expression system. Mol Biotechnol 28:241–256. https://doi.org/10.1385/MB:28:3:241

    Article  CAS  PubMed  Google Scholar 

  20. Raju TS, Briggs JB, Borge SM, Jones AJS (2000) Species-specific variation in glycosylation of Igc: evidence for the species-specific sialylation and branch-specific galactosylation and importance for engineering recombinant glycoprotein therapeutics. Glycobiology 10:477–486. https://doi.org/10.1093/glycob/10.5.477

    Article  CAS  PubMed  Google Scholar 

  21. Gupta SK, Shukla P (2018) Glycosylation control technologies for recombinant therapeutic proteins. Appl Microbiol Biotechnol 102:10457–10468. https://doi.org/10.1007/s00253-018-9430-6

    Article  CAS  PubMed  Google Scholar 

  22. Lehle L (1992) Protein glycosylation in yeast. Antonie Van Leeuwenhoek 61:133–134. https://doi.org/10.1007/BF00580620

    Article  CAS  PubMed  Google Scholar 

  23. Walski T, De Schutter K, Van Damme EJM, Smagghe G (2017) Diversity and functions of protein glycosylation in insects. Insect Biochem Mol Biol 83:21–34. https://doi.org/10.1016/j.ibmb.2017.02.005

    Article  CAS  PubMed  Google Scholar 

  24. Strasser R (2016) Plant protein glycosylation. Glycobiology 26:926–939. https://doi.org/10.1093/glycob/cww023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lalonde M-E, Durocher Y (2017) Therapeutic glycoprotein production in mammalian cells. J Biotechnol 251:128–140. https://doi.org/10.1016/j.jbiotec.2017.04.028

    Article  CAS  PubMed  Google Scholar 

  26. Elliott S, Lorenzini T, Asher S et al (2003) Enhancement of therapeutic protein in vivo activities through glycoengineering. Nat Biotechnol 21:414–421. https://doi.org/10.1038/nbt799

    Article  CAS  PubMed  Google Scholar 

  27. Niwa R, Satoh M (2015) The current status and prospects of antibody engineering for therapeutic use: focus on Glycoengineering technology. J Pharm Sci 104:930–941. https://doi.org/10.1002/jps.24316

    Article  CAS  PubMed  Google Scholar 

  28. Werner RG, Kopp K, Schlueter M (2007) Glycosylation of therapeutic proteins in different production systems. Acta Paediatr Int J Paediatr 96:17–22. https://doi.org/10.1111/j.1651-2227.2007.00199.x

    Article  Google Scholar 

  29. Beck A, Wagner-Rousset E, Bussat M et al (2008) Trends in glycosylation, glycoanalysis and glycoengineering of therapeutic antibodies and fc-fusion proteins. Curr Pharm Biotechnol 9:482–501. https://doi.org/10.2174/138920108786786411

    Article  CAS  PubMed  Google Scholar 

  30. Du T, Buenbrazo N, Kell L et al (2019) A bacterial expression platform for production of therapeutic proteins containing human-like O-linked Glycans. Cell Chem Biol 26:203–212.e5. https://doi.org/10.1016/j.chembiol.2018.10.017

    Article  CAS  PubMed  Google Scholar 

  31. Jacobs P, Callewaert N (2009) N-glycosylation engineering of biopharmaceutical expression systems. Curr Mol Med 9:774–800. https://doi.org/10.2174/156652409789105552

    Article  CAS  PubMed  Google Scholar 

  32. Fox JL (2012) First plant-made biologic approved. Nat Biotechnol 30:472. https://doi.org/10.1038/nbt0612-472

    Article  CAS  Google Scholar 

  33. Yang M, Butler M (2000) Effects of ammonia on CHO cell growth, erythropoietin production, and glycosylation. Biotechnol Bioeng 68:370–380. https://doi.org/10.1002/(SICI)1097-0290(20000520)68:4<370::AID-BIT2>3.0.CO;2-K

    Article  CAS  PubMed  Google Scholar 

  34. Yang M, Butler M (2002) Effects of ammonia and glucosamine on the heterogeneity of erythropoietin glycoforms. Biotechnol Prog 18:129–138. https://doi.org/10.1021/bp0101334

    Article  CAS  PubMed  Google Scholar 

  35. Müthing J, Kemminer SE, Conradt HS et al (2003) Effects of buffering conditions and culture pH on production rates and glycosylation of clinical phase I anti-melanoma mouse IgG3 monoclonal antibody R24. Biotechnol Bioeng 83:321–334. https://doi.org/10.1002/bit.10673

    Article  CAS  PubMed  Google Scholar 

  36. Trummer E, Fauland K, Seidinger S et al (2006) Process parameter shifting: part II. Biphasic cultivation - a tool for enhancing the volumetric productivity of batch processes using Epo-fc expressing CHO cells. Biotechnol Bioeng 94:1045–1052. https://doi.org/10.1002/bit.20958

    Article  CAS  PubMed  Google Scholar 

  37. Lipscomb ML, Palomares LA, Hernández V et al (2005) Effect of production method and gene amplification on the glycosylation pattern of a secreted reporter protein in CHO cells. Biotechnol Prog 21:40–49. https://doi.org/10.1021/bp049761m

    Article  CAS  PubMed  Google Scholar 

  38. Restelli V, Wang MD, Huzel N et al (2006) The effect of dissolved oxygen on the production and the glycosylation profile of recombinant human erythropoietin produced from CHO cells. Biotechnol Bioeng 94:481–494. https://doi.org/10.1002/bit.20875

    Article  CAS  PubMed  Google Scholar 

  39. Harvey RD (2017) Science of biosimilars. J Oncol Pract 13:17s–23s. https://doi.org/10.1200/jop.2017.026062

    Article  PubMed  Google Scholar 

  40. Kabir ER, Moreino SS, Siam MKS (2019) The breakthrough of biosimilars: a twist in the narrative of biological therapy. Biomol Ther 9:1–34. https://doi.org/10.3390/biom9090410

    Article  CAS  Google Scholar 

  41. Chow S-C, Song F, Bai H (2016) Analytical similarity assessment in biosimilar studies. AAPS J 18:670–677. https://doi.org/10.1208/s12248-016-9882-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chung Chow S (2014) On assessment of analytical similarity in biosimilar studies. Drug Des Open Access 03. https://doi.org/10.4172/2169-0138.1000e124

  43. Committee for Medicinal Products for Human Use (CHMP) - European Medicines Agency (2014) Similar biological medicinal products containing biotechnology-derived proteins as active substance: quality issue

    Google Scholar 

  44. U.S. Department of Health and Human Services Food and drug administration (2019) Development of Therapeutic Protein Biosimilars: Comparative Analytical Assessment and Other Quality-Related Considerations (draft)

    Google Scholar 

  45. World Health Organization (2009) Guidelines on evaluation of similar biotherapeutic products (SBPs)

    Google Scholar 

  46. Duivelshof BL, Jiskoot W, Beck A et al (2019) Glycosylation of biosimilars: recent advances in analytical characterization and clinical implications. Anal Chim Acta 1089:1–18. https://doi.org/10.1016/j.aca.2019.08.044

    Article  CAS  PubMed  Google Scholar 

  47. Hajba L, Szekrényes Á, Borza B, Guttman A (2018) On the glycosylation aspects of biosimilarity. Drug Discov Today 23:616–625. https://doi.org/10.1016/j.drudis.2018.01.009

    Article  CAS  PubMed  Google Scholar 

  48. Kim S, Song J, Park S et al (2017) Drifts in ADCC-related quality attributes of Herceptin®: impact on development of a trastuzumab biosimilar. MAbs 9:704–714. https://doi.org/10.1080/19420862.2017.1305530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Planinc A, Dejaegher B, Vander HY et al (2017) Batch-to-batch N-glycosylation study of infliximab, trastuzumab and bevacizumab, and stability study of bevacizumab. Eur J Hosp Pharm 24:286–292. https://doi.org/10.1136/ejhpharm-2016-001022

    Article  PubMed  Google Scholar 

  50. Zhou Q, Qiu H (2018) The mechanistic impact of N-glycosylation on stability, pharmacokinetics and immunogenicity of therapeutic proteins. J Pharm Sci 108:1366–1377. https://doi.org/10.1016/j.xphs.2018.11.029

    Article  CAS  PubMed  Google Scholar 

  51. Sjögren J, Lood R, Nägeli A (2019) On enzymatic remodeling of IgG glycosylation; unique tools with broad applications. Glycobiology 30(4):254–267. https://doi.org/10.1093/glycob/cwz085

    Article  CAS  PubMed Central  Google Scholar 

  52. Solá RJ, Griebenow K (2009) Effects of glycosylation on the stability of protein pharmaceuticals. J Pharm Sci 98:1223–1245. https://doi.org/10.1002/jps.21504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ward S, O’Sullivan JM, O’Donnell JS (2019) von Willebrand factor sialylation—a critical regulator of biological function. J Thromb Haemost 17:1018–1029. https://doi.org/10.1111/jth.14471

    Article  CAS  PubMed  Google Scholar 

  54. Ono M (1994) Physicochemical and biochemical characteristics of glycosylated recombinant human granulocyte colony stimulating factor (lenograstim). Eur J Cancer 30:S7–S11

    Google Scholar 

  55. Narhi LO, Arakawa T, Aoki KH et al (1991) The effect of carbohydrate on the structure and stability of erythropoietin. J Biol Chem 266:23022–23026

    Article  CAS  Google Scholar 

  56. Uchida E, Morimoto K, Kawasaki N et al (1997) Effect of active oxygen radicals on protein and carbohydrate moieties of recombinant human erythropoietin. Free Radic Res 27:311–323. https://doi.org/10.3109/10715769709065769

    Article  CAS  PubMed  Google Scholar 

  57. Raso SW, Abel J, Barnes JM et al (2005) Aggregation of granulocyte-colony stimulating factor in vitro involves a conformationally altered monomeric state. Protein Sci 14:2246–2257. https://doi.org/10.1110/ps.051489405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Banks DD (2011) The effect of glycosylation on the folding kinetics of erythropoietin. J Mol Biol 412:536–550. https://doi.org/10.1016/j.jmb.2011.07.061

    Article  CAS  PubMed  Google Scholar 

  59. Raju TS (2003) Glycosylation variation in expression systems and their impact on biological activity of therapeutic immunoglobulins. Bio Process Int 1:44–53

    CAS  Google Scholar 

  60. Jelkmann W (2002) Pharmacology, pharmacokinetics and safety of recombinant human erythropoietin (rhEPO). Recomb Hum Erythrop Clin Oncol:203–221. https://doi.org/10.1007/978-3-7091-7658-0_11

  61. Liu L, Li H, Hamilton SR et al (2012) The impact of sialic acids on the pharmacokinetics of a PEGylated erythropoietin. J Pharm Sci 101:4414–4418. https://doi.org/10.1002/jps.23320

    Article  CAS  PubMed  Google Scholar 

  62. Kwak CY, Park SY, Lee CG et al (2017) Enhancing the sialylation of recombinant EPO produced in CHO cells via the inhibition of glycosphingolipid biosynthesis. Sci Rep 7:6–10. https://doi.org/10.1038/s41598-017-13609-4

    Article  CAS  Google Scholar 

  63. Teare JM, Kates DS, Shah A, Garger S (2019) Increased branching and sialylation of n-linked glycans correlate with an improved pharmacokinetic profile for BAY 81–8973 compared with other full-length rFVIII products. Drug Des Devel Ther 13:941–948. https://doi.org/10.2147/DDDT.S188171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Morimoto K, Tsuda E, Said AA et al (1996) Biological and physicochemical characterization of recombinant human erythropoietins fractionated by mono Q column chromatography and their modification with sialyltransferase. Glycoconj J 13:1013–1020. https://doi.org/10.1007/BF01053197

    Article  CAS  PubMed  Google Scholar 

  65. Holliger P, Prospero T, Winter G (1993) “Diabodies”: small bivalent and bispecific antibody fragments. Proc Natl Acad Sci U S A 90:6444–6448. https://doi.org/10.1073/pnas.90.14.6444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Stork R, Zettlitz KA, Müller D et al (2008) N-glycosylation as novel strategy to improve pharmacokinetic properties of bispecific single-chain Diabodies. J Biol Chem 283:7804–7812. https://doi.org/10.1074/jbc.M709179200

    Article  CAS  PubMed  Google Scholar 

  67. Loutradis D, Vlismas A, Drakakis P (2010) Corifollitropin alfa: a novel long-acting recombinant follicle-stimulating hormone agonist for controlled ovarian stimulation. Women’s Heal 6:655–664. https://doi.org/10.2217/WHE.10.56

    Article  CAS  Google Scholar 

  68. Darling RJ, Kuchibhotla U, Glaesner W et al (2002) Glycosylation of erythropoietin affects receptor binding kinetics: role of electrostatic interactions. Biochemistry 41:14524–14531. https://doi.org/10.1021/bi0265022

    Article  CAS  PubMed  Google Scholar 

  69. Egrie JC, Dwyer E, Browne JK et al (2003) Darbepoetin alfa has a longer circulating half-life and greater in vivo potency than recombinant human erythropoietin. Exp Hematol 31:290–299. https://doi.org/10.1016/S0301-472X(03)00006-7

    Article  CAS  PubMed  Google Scholar 

  70. Elliott S, Egrie J, Browne J et al (2004) Control of rHuEPO biological activity: the role of carbohydrate. Exp Hematol 32:1146–1155. https://doi.org/10.1016/j.exphem.2004.08.004

    Article  CAS  PubMed  Google Scholar 

  71. Steinke JW, Platts-Mills TAE, Commins SP (2015) The alpha-gal story: lessons learned from connecting the dots. J Allergy Clin Immunol 135:589–596

    Article  CAS  Google Scholar 

  72. Ghaderi D, Taylor RE, Padler-Karavani V et al (2010) Implications of the presence of N-glycolylneuraminic acid in recombinant therapeutic glycoproteins. Nat Biotechnol 28:863–867. https://doi.org/10.1038/nbt.1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ghaderi D, Zhang M, Hurtado-Ziola N, Varki A (2012) Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation. Biotechnol Genet Eng Rev 28:147–176. https://doi.org/10.5661/bger-28-147

    Article  CAS  PubMed  Google Scholar 

  74. Rup B, Alon S, Amit-Cohen B-C et al (2017) Immunogenicity of glycans on biotherapeutic drugs produced in plant expression systems—the taliglucerase alfa story. PLoS One 12:e0186211. https://doi.org/10.1371/journal.pone.0186211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yu C, Gao K, Zhu L et al (2016) At least two fc Neu5Gc residues of monoclonal antibodies are required for binding to anti-Neu5Gc antibody. Sci Rep 6:20029. https://doi.org/10.1038/srep20029

    Article  CAS  Google Scholar 

  76. van Bueren JJL, Rispens T, Verploegen S et al (2011) Anti-galactose-α-1,3-galactose IgE from allergic patients does not bind α-galactosylated glycans on intact therapeutic antibody fc domains. Nat Biotechnol 29:574–576. https://doi.org/10.1038/nbt.1912

    Article  CAS  Google Scholar 

  77. Gribben JG, Devereux S, Thomas NSB et al (1990) Development of antibodies to unprotected glycosylation sites on recombinant human GM-CSF. Lancet 335:434–437. https://doi.org/10.1016/0140-6736(90)90665-R

    Article  CAS  PubMed  Google Scholar 

  78. Ju M-S, Jung ST (2014) Aglycosylated full-length IgG antibodies: steps toward next-generation immunotherapeutics. Curr Opin Biotechnol 30:128–139. https://doi.org/10.1016/j.copbio.2014.06.013

    Article  CAS  PubMed  Google Scholar 

  79. Goldberg RM, Kirkpatrick P (2005) Cetuximab. Nat Rev Drug Discov 4:10–12. https://doi.org/10.1038/nrd1728

    Article  Google Scholar 

  80. Holland M, Yagi H, Takahashi N et al (2006) Differential glycosylation of polyclonal IgG, IgG-fc and IgG-fab isolated from the sera of patients with ANCA-associated systemic vasculitis. Biochim Biophys Acta 1760:669–677. https://doi.org/10.1016/j.bbagen.2005.11.021

    Article  CAS  PubMed  Google Scholar 

  81. Beck A, Reichert JM (2012) Marketing approval of mogamulizumab - a triumph for glycoengineering. MAbs 4:419–425. https://doi.org/10.4161/mabs.20996

    Article  PubMed  PubMed Central  Google Scholar 

  82. Jefferis R (2012) Isotype and glycoform selection for antibody therapeutics. Arch Biochem Biophys 526:159–166. https://doi.org/10.1016/j.abb.2012.03.021

    Article  CAS  PubMed  Google Scholar 

  83. Raju TS, Jordan RE (2012) Galactosylation variations in marketed therapeutic antibodies. MAbs 4:385–391. https://doi.org/10.4161/mabs.19868

    Article  PubMed  PubMed Central  Google Scholar 

  84. Sundaram S, Matathia A, Qian J et al (2011) An innovative approach for the characterization of the isoforms of a monoclonal antibody product. MAbs 3:505–512. https://doi.org/10.4161/mabs.3.6.18090

    Article  PubMed  PubMed Central  Google Scholar 

  85. Chung CH, Mirakhur B, Chan E et al (2008) Cetuximab-induced anaphylaxis and IgE specific for galactose-α-1,3-galactose. N Engl J Med 358:1109–1117. https://doi.org/10.1056/NEJMoa074943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Beck A, Cochet O, Wurch T (2009) GlycoFi’s technology to control the glycosylation of recombinant therapeutic proteins. Expert Opin Drug Discov 5:95–111. https://doi.org/10.1517/17460440903413504

    Article  PubMed  Google Scholar 

  87. Goetze AM, Liu YD, Zhang Z et al (2011) High-mannose glycans on the fc region of therapeutic IgG antibodies increase serum clearance in humans. Glycobiology 21:949–959. https://doi.org/10.1093/glycob/cwr027

    Article  CAS  PubMed  Google Scholar 

  88. Jiang X-R, Song A, Bergelson S et al (2011) Advances in the assessment and control of the effector functions of therapeutic antibodies. Nat Rev Drug Discov 10:101. https://doi.org/10.1038/nrd3365

    Article  CAS  PubMed  Google Scholar 

  89. Hogarth PM, Pietersz GA (2012) Fc receptor-targeted therapies for the treatment of inflammation, cancer and beyond. Nat Rev Drug Discov 11:311–331. https://doi.org/10.1038/nrd2909

    Article  CAS  PubMed  Google Scholar 

  90. Wada R, Matsui M, Kawasaki N (2019) Influence of N-glycosylation on effector functions and thermal stability of glycoengineered IgG1 monoclonal antibody with homogeneous glycoforms. MAbs 11:350–372. https://doi.org/10.1080/19420862.2018.1551044

    Article  CAS  PubMed  Google Scholar 

  91. Mackness BC, Jaworski JA, Boudanova E et al (2019) Antibody fc engineering for enhanced neonatal fc receptor binding and prolonged circulation half-life. MAbs 11:1276–1288. https://doi.org/10.1080/19420862.2019.1633883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zheng K, Bantog C, Bayer R (2011) The impact of glycosylation on monoclonal antibody conformation and stability. MAbs 3:568–576. https://doi.org/10.4161/mabs.3.6.17922

    Article  PubMed  PubMed Central  Google Scholar 

  93. Glycotope GmbH. https://www.glycotope.com/biopharmaceuticals-services/cell-lines/

  94. Liu R, Giddens J, McClung CM et al (2015) Evaluation of a glycoengineered monoclonal antibody via LC-MS analysis in combination with multiple enzymatic digestion. MAbs 8:340–346. https://doi.org/10.1080/19420862.2015.1113361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Buettner MJ, Shah SR, Saeui CT et al (2018) Improving immunotherapy through Glycodesign. Front Immunol 9:2485. https://doi.org/10.3389/fimmu.2018.02485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mimura Y, Katoh T, Saldova R et al (2018) Glycosylation engineering of therapeutic IgG antibodies: challenges for the safety, functionality and efficacy. Protein Cell 9:47–62. https://doi.org/10.1007/s13238-017-0433-3

    Article  CAS  PubMed  Google Scholar 

  97. Periat A, Fekete S, Cusumano A et al (2016) Potential of hydrophilic interaction chromatography for the analytical characterization of protein biopharmaceuticals. J Chromatogr A 1448:81–92. https://doi.org/10.1016/j.chroma.2016.04.056

    Article  CAS  PubMed  Google Scholar 

  98. Domínguez-Vega E, Tengattini S, Peintner C et al (2018) High-resolution glycoform profiling of intact therapeutic proteins by hydrophilic interaction chromatography-mass spectrometry. Talanta 184:375–381. https://doi.org/10.1016/j.talanta.2018.03.015

    Article  CAS  PubMed  Google Scholar 

  99. Gilar M, Yu Y-Q, Ahn J et al (2011) Characterization of glycoprotein digests with hydrophilic interaction chromatography and mass spectrometry. Anal Biochem 417:80–88. https://doi.org/10.1016/j.ab.2011.05.028

    Article  CAS  PubMed  Google Scholar 

  100. Zhou S, Veillon L, Dong X et al (2017) Direct comparison of derivatization strategies for LC-MS/MS analysis of N -glycans. Analyst 142:4446–4455. https://doi.org/10.1039/c7an01262d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hilliard M, Alley WR, McManus CA et al (2017) Glycan characterization of the NIST RM monoclonal antibody using a total analytical solution: from sample preparation to data analysis. MAbs 9:1349–1359. https://doi.org/10.1080/19420862.2017.1377381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hounsell EF, Davies MJ, Smith KD (2003) Determination of monosaccharide linkage and substitution patterns by GC-MS methylation analysis. In: Protein protocols handbook. Humana Press, New Jersey, pp 811–814

    Google Scholar 

  103. Largy E, Cantais F, Van Vyncht G et al (2017) Orthogonal liquid chromatography–mass spectrometry methods for the comprehensive characterization of therapeutic glycoproteins, from released glycans to intact protein level. J Chromatogr A 1498:128–146. https://doi.org/10.1016/j.chroma.2017.02.072

    Article  CAS  PubMed  Google Scholar 

  104. Quality Assistance sa. https://www.quality-assistance.com/resources/study-and-technical-sheets

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Delobel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Delobel, A. (2021). Glycosylation of Therapeutic Proteins: A Critical Quality Attribute. In: Delobel, A. (eds) Mass Spectrometry of Glycoproteins. Methods in Molecular Biology, vol 2271. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1241-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1241-5_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1240-8

  • Online ISBN: 978-1-0716-1241-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics