Skip to main content

Fragment-Based Drug Design of Selective HDAC6 Inhibitors

  • Protocol
  • First Online:
Protein-Ligand Interactions and Drug Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2266))

Abstract

Medicinal chemistry society has enough arguments to justify the usage of fragment-based drug design (FBDD) methodologies for the identification of lead compounds. Since the FDA approval of three kinase inhibitors – vemurafenib, venetoclax, and erdafitinib, FBDD has become a challenging alternative to high-throughput screening methods in drug discovery. The following protocol presents in silico drug design of selective histone deacetylase 6 (HDAC6) inhibitors through a fragment-based approach. To date, structural motifs that are important for HDAC inhibitory activity and selectivity are described as: surface recognition group (CAP group), aliphatic or aromatic linker, and zinc-binding group (ZBG). The main idea of this FBDD method is to identify novel and target-selective CAP groups by virtual scanning of publicly available fragment databases. Template structure used to search for novel heterocyclic and carbocyclic fragments is 1,8-naphthalimide (CAP group of scriptaid, a potent HDAC inhibitor). Herein, the design of HDAC6 inhibitors is based on linking the identified fragments with the aliphatic or aromatic linker and hydroxamic acid (ZBG) moiety. Final selection of potential selective HDAC6 inhibitors is based on combined structure-based (molecular docking) and ligand-based (three-dimensional quantitative structure–activity relationships, 3D-QSAR) techniques. Designed compounds are docked in the active site pockets of human HDAC1 and HDAC6 isoforms, and their docking conformations used to predict their HDAC inhibitory and selectivity profiles through two developed 3D-QSAR models (describing HDAC1 and HDAC6 inhibitory activities).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274:1531–1534. https://doi.org/10.1126/science.274.5292.1531

    Article  CAS  PubMed  Google Scholar 

  2. Congreve M, Carr R, Murray C, Jhoti H (2003) A ‘rule of three’ for fragment-based lead discovery? Drug Discov Today 8:876–877. https://doi.org/10.1016/S1359-6446(03)02831-9

    Article  PubMed  Google Scholar 

  3. Hann MM, Leach AR, Harper G (2001) Molecular complexity and its impact on the probability of finding leads for drug discovery. J Chem Inf Comput Sci 41(3):856–864. https://doi.org/10.1021/ci000403i

    Article  CAS  PubMed  Google Scholar 

  4. Gagic Z, Ruzic D, Djokovic N, Djikic T, Nikolic K (2019) In silico methods for design of kinase inhibitors as anticancer drugs. Front Chem 7:873. https://doi.org/10.3389/fchem.2019.00873

    Article  CAS  PubMed  Google Scholar 

  5. Bian Y, Xie XQS (2018) Computational fragment-based drug design: current trends, strategies, and applications. AAPS J 20(3):59. https://doi.org/10.1208/s12248-018-0216-7

    Article  CAS  PubMed  Google Scholar 

  6. Otava Chemicals (2020) Otava chelator fragment library. https://otavachemicalscom/products/fragment-libraries/general-fragment-library Accessed 22 Feb 2018

  7. Life Chemicals (2020) Targeted and Focused Screening Libraries. https://lifechemicals.com/screening-libraries/targeted-and-focused-screening-libraries/ Accessed 22 Feb 2018

  8. Barelier S, Pons J, Marcillat O, Lancelin JM, Krimm I (2010) Fragment-based deconstruction of Bcl-xL inhibitors. J Med Chem 53(6):2577–2588. https://doi.org/10.1021/jm100009z

    Article  CAS  PubMed  Google Scholar 

  9. Zhang X, Yuan Z, Zhang Y, Yong S, Salas-Burgos A, Koomen J, Olashaw N, Parsons JT, Yang XJ, Dent SR, Yao TP, Lane WS, Seto E (2007) HDAC6 modulates cell motility by altering the acetylation level of cortactin. Mol Cell 27(2):197–213. https://doi.org/10.1016/j.molcel.2007.05.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Seidel C, Schnekenburger M, Dicato M, Diederich M (2015) Histone deacetylase 6 in health and disease. Epigenomics 7(1):103–118. https://doi.org/10.2217/epi.14.69

    Article  CAS  PubMed  Google Scholar 

  11. Bradner JE, West N, Grachan ML, Greenberg EF, Haggarty SJ, Warnow T, Mazitschek R (2010) Chemical phylogenetics of histone deacetylases. Nat Chem Biol 6(3):238. https://doi.org/10.1038/nchembio.313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Talete srl, DRAGON (Software for Molecular Descriptor Calculation), Version 6.0–2010 - http://www.talete.mi.it/

  13. Porter NJ, Mahendran A, Breslow R, Christianson DW (2017) Unusual zinc-binding mode of HDAC6-selective hydroxamate inhibitors. Proc Natl Acad Sci U S A 114(51):13459–13464. https://doi.org/10.1073/pnas.1718823114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ruzic D, Petkovic M, Agbaba D, Ganesan A, Nikolic K (2019) Combined ligand and fragment-based drug Design of Selective Histone Deacetylase–6 inhibitors. Mol Inform 38(5):e1800083. https://doi.org/10.1002/minf.201800083

    Article  CAS  PubMed  Google Scholar 

  15. Irwin JJ, Shoichet BK (2005) ZINC− a free database of commercially available compounds for virtual screening. J Chem Inf Model 45(1):177–182. https://doi.org/10.1021/ci049714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A et al (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40(D1):D1100–D1107. https://doi.org/10.1093/nar/gkr777

    Article  CAS  PubMed  Google Scholar 

  17. Enamine Ltd. (www.enamine.net)

  18. CambridgeSoft, Corporation (2013) ChemBio3D Ultra, Version 13.0, Cambridge

    Google Scholar 

  19. Dassault Systemes BIOVIA. (2016). Discovery Studio v17.2.0.. https://www.3dsbiovia.com/products/collaborative-science/biovia-discovery-studio/visualization-download.php

    Google Scholar 

  20. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748. https://doi.org/10.1006/jmbi.1996.0897

    Article  CAS  PubMed  Google Scholar 

  21. Eldridge MD, Murray CW, Auton TR, Paolini GV, Mee RP (1997) Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J Comput Aided Mol Des 11:425–445. https://doi.org/10.1023/a:1007996124545

  22. http://www.moldiscovery.com/software/pentacle/

  23. Chem Axon. (2017). Instant J Chem V17.3.27.0.. https://chemaxon.com/products/instant-jchem

    Google Scholar 

  24. Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53(7):2719–2740. https://doi.org/10.1021/jm901137j

    Article  CAS  PubMed  Google Scholar 

  25. Lagorce D, Bouslama L, Becot J, Miteva MA, Villoutreix BO (2017) FAF-Drugs4: free ADME-tox filtering computations for chemical biology and early stages drug discovery. Bioinformatics 33(22):3658–3660. https://doi.org/10.1093/bioinformatics/btx491

    Article  CAS  PubMed  Google Scholar 

  26. Porter NJ, Wagner FF, Christianson DW (2018) Entropy as a driver of selectivity for inhibitor binding to histone deacetylase 6. Biochemistry 57(26):3916–3924. https://doi.org/10.1021/acs.biochem.8b00367

    Article  CAS  PubMed  Google Scholar 

  27. Chem Axon. (2017). Marvin Sketch V17.27. https://chemaxon.com/products/marvin

    Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al (2016) Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford CT

    Google Scholar 

  29. Hehre WJ, Radom L, Schleyer PR, Pople JA (1986) Ab initio molecular orbital theory Vol 1. Wiley, New York

    Google Scholar 

  30. Mannhold R, Kubinyi H, Folkers G (2006) Molecular interaction fields. Applications in drug discovery and ADME prediction, vol 27. Wiley-VCH, Zurich

    Google Scholar 

  31. Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Graph Model 20:269–276. https://doi.org/10.1016/S1093-3263(01)00123-1

    Article  CAS  PubMed  Google Scholar 

  32. Morgen M, Steimbach RR, Géraldy M, Hellweg L, Sehr P, Ridinger J, Witt O, Oehme I, Herbst-Gervasoni CJ, Osko JD, Porter NJ, Christianson DW, Gunkel N, Miller AK (2020) Design and synthesis of Dihydroxamic acids as HDAC6/8/10 inhibitors. ChemMedChem 15:1–13. https://doi.org/10.1002/cmdc.202000149

    Article  CAS  Google Scholar 

  33. Chen K, Zhang X, Wu YD, Wiest O (2014) Inhibition and mechanism of HDAC8 revisited. JACS 136(33):11636–11643. https://doi.org/10.1021/ja501548p

    Article  CAS  Google Scholar 

  34. Wu R, Lu Z, Cao Z, Zhang Y (2011) Zinc chelation with hydroxamate in histone deacetylases modulated by water access to the linker binding channel. J Am Chem Soc 133(16):6110–6113. https://doi.org/10.1021/ja111104p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bell EW, Zhang Y (2019) DockRMSD: an open-source tool for atom mapping and RMSD calculation of symmetric molecules through graph isomorphism. J Cheminformatics 11(1):40. https://doi.org/10.1186/s13321-019-0362-7

    Article  CAS  Google Scholar 

  36. Gramatica P (2007) Principles of QSAR models validation: internal and external. QSAR Comb Sci 26(5):694–701. https://doi.org/10.1002/qsar.200610151

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science and Technological Development of the Republic of Serbia, Contract No. 451-03-68/2020-14/200161. We kindly acknowledge European COST Action CM1406 (EpiChemBio). Numerical simulations were run on the PARADOX-IV supercomputing facility at the Scientific Computing Laboratory, National Center of Excellence for the Study of Complex Systems, Institute of Physics Belgrade, supported in part by the Ministry of Education, Science, and Technological Development of the Republic of Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dusan Ruzic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ruzic, D., Djokovic, N., Nikolic, K. (2021). Fragment-Based Drug Design of Selective HDAC6 Inhibitors. In: Ballante, F. (eds) Protein-Ligand Interactions and Drug Design. Methods in Molecular Biology, vol 2266. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1209-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1209-5_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1208-8

  • Online ISBN: 978-1-0716-1209-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics