Skip to main content

In Vitro Differentiation of Tumor-Associated Macrophages from Monocyte Precursors with Modified Melanoma-Conditioned Medium

  • Protocol
  • First Online:
Melanoma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2265))

Abstract

Tumor-associated macrophages (TAMs) are one of most important components of the tumor microenvironment. Although many assays have been developed to differentiate monocytes into macrophages (Mϕ) for studying the biology of TAMs in vitro, little is known whether the macrophages induced by these approaches can recapitulate the biology of TAMs present in the tumor microenvironment. We have developed a novel assay to differentiate human monocytes into TAMs using modified melanoma-conditioned medium, which is derived from the concentrated tumor cell culture medium. Characterization of these modified melanoma-conditioned medium-induced macrophages (MCMI-Mϕ) by multiple flow cytometry, Luminex, microarray, and immunohistochemistry analyses indicates that MCMI-Mϕ are phenotypically and functionally highly similar to the TAMs present in the tumor microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11(10):889–896. https://doi.org/10.1038/ni.1937

    Article  CAS  PubMed  Google Scholar 

  2. Cassetta L, Fragkogianni S, Sims AH, Swierczak A, Forrester LM, Zhang H, Soong DYH, Cotechini T, Anur P, Lin EY, Fidanza A, Lopez-Yrigoyen M, Millar MR, Urman A, Ai Z, Spellman PT, Hwang ES, Dixon JM, Wiechmann L, Coussens LM, Smith HO, Pollard JW (2019) Human tumor-associated macrophage and monocyte transcriptional landscapes reveal cancer-specific reprogramming, biomarkers, and therapeutic targets. Cancer Cell 35(4):588–602 e510. https://doi.org/10.1016/j.ccell.2019.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. DeNardo DG, Ruffell B (2019) Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol 19(6):369–382. https://doi.org/10.1038/s41577-019-0127-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Komohara Y, Jinushi M, Takeya M (2014) Clinical significance of macrophage heterogeneity in human malignant tumors. Cancer Sci 105(1):1–8. https://doi.org/10.1111/cas.12314

    Article  CAS  PubMed  Google Scholar 

  5. Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4(1):71–78. https://doi.org/10.1038/nrc1256

    Article  CAS  PubMed  Google Scholar 

  6. Kumar S, Ramesh A, Kulkarni A (2020) Targeting macrophages: a novel avenue for cancer drug discovery. Expert Opin Drug Discov 15(5):561–574. https://doi.org/10.1080/17460441.2020.1733525

    Article  CAS  PubMed  Google Scholar 

  7. Ruffell B, Coussens LM (2015) Macrophages and therapeutic resistance in cancer. Cancer Cell 27(4):462–472. https://doi.org/10.1016/j.ccell.2015.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Benner B, Scarberry L, Suarez-Kelly LP, Duggan MC, Campbell AR, Smith E, Lapurga G, Jiang K, Butchar JP, Tridandapani S, Howard JH, Baiocchi RA, Mace TA, Carson WE 3rd (2019) Generation of monocyte-derived tumor-associated macrophages using tumor-conditioned media provides a novel method to study tumor-associated macrophages in vitro. J Immunother Cancer 7(1):140. https://doi.org/10.1186/s40425-019-0622-0

    Article  PubMed  PubMed Central  Google Scholar 

  9. Heideveld E, Horcas-Lopez M, Lopez-Yrigoyen M, Forrester LM, Cassetta L, Pollard JW (2020) Methods for macrophage differentiation and in vitro generation of human tumor associated-like macrophages. Methods Enzymol 632:113–131. https://doi.org/10.1016/bs.mie.2019.10.005

    Article  CAS  PubMed  Google Scholar 

  10. Wang T, Ge Y, Xiao M, Lopez-Coral A, Azuma R, Somasundaram R, Zhang G, Wei Z, Xu X, Rauscher FJ 3rd, Herlyn M, Kaufman RE (2012) Melanoma-derived conditioned media efficiently induce the differentiation of monocytes to macrophages that display a highly invasive gene signature. Pigment Cell Melanoma Res 25(4):493–505. https://doi.org/10.1111/j.1755-148X.2012.01005.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang T, Xiao M, Ge Y, Krepler C, Belser E, Lopez-Coral A, Xu X, Zhang G, Azuma R, Liu Q, Liu R, Li L, Amaravadi RK, Xu W, Karakousis G, Gangadhar TC, Schuchter LM, Lieu M, Khare S, Halloran MB, Herlyn M, Kaufman RE (2015) BRAF inhibition stimulates melanoma-associated macrophages to drive tumor growth. Clin Cancer Res 21(7):1652–1664. https://doi.org/10.1158/1078-0432.CCR-14-1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Drexler HG, Uphoff CC (2002) Mycoplasma contamination of cell cultures: incidence, sources, effects, detection, elimination, prevention. Cytotechnology 39(2):75–90. https://doi.org/10.1023/A:1022913015916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stacey A, Doyle A (1997) Routine testing of cell cultures and their products for mycoplasma contamination. Methods Mol Biol 75:305–311. https://doi.org/10.1385/0-89603-441-0:305

    Article  CAS  PubMed  Google Scholar 

  14. Baust JM, Buehring GC, Campbell L, Elmore E, Harbell JW, Nims RW, Price P, Reid YA, Simione F (2017) Best practices in cell culture: an overview. In Vitro Cell Dev Biol Anim 53(8):669–672. https://doi.org/10.1007/s11626-017-0177-7

    Article  CAS  PubMed  Google Scholar 

  15. Phelan K, May KM (2015) Basic techniques in mammalian cell tissue culture. Curr Protoc Cell Biol 66:1 1 1–1 1 22. https://doi.org/10.1002/0471143030.cb0101s66

    Article  Google Scholar 

  16. Phelan K, May KM (2016) Basic techniques in mammalian cell tissue culture. Curr Protoc Toxicol 70:A 3B 1-A 3B 22. https://doi.org/10.1002/cptx.13

    Article  PubMed  Google Scholar 

  17. Cabrera CM, Cobo F, Nieto A, Cortes JL, Montes RM, Catalina P, Concha A (2006) Identity tests: determination of cell line cross-contamination. Cytotechnology 51(2):45–50. https://doi.org/10.1007/s10616-006-9013-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dirks WG, MacLeod RA, Nakamura Y, Kohara A, Reid Y, Milch H, Drexler HG, Mizusawa H (2010) Cell line cross-contamination initiative: an interactive reference database of STR profiles covering common cancer cell lines. Int J Cancer 126(1):303–304. https://doi.org/10.1002/ijc.24999

    Article  CAS  PubMed  Google Scholar 

  19. Geraghty RJ, Capes-Davis A, Davis JM, Downward J, Freshney RI, Knezevic I, Lovell-Badge R, Masters JR, Meredith J, Stacey GN, Thraves P, Vias M, Cancer Research UK (2014) Guidelines for the use of cell lines in biomedical research. Br J Cancer 111(6):1021–1046. https://doi.org/10.1038/bjc.2014.166

    Article  PubMed  PubMed Central  Google Scholar 

  20. Faradji A, Bohbot A, Schmitt-Goguel M, Siffert JC, Dumont S, Wiesel ML, Piemont Y, Eischen A, Bergerat JP, Bartholeyns J et al (1994) Large scale isolation of human blood monocytes by continuous flow centrifugation leukapheresis and counterflow centrifugation elutriation for adoptive cellular immunotherapy in cancer patients. J Immunol Methods 174(1–2):297–309. https://doi.org/10.1016/0022-1759(94)90033-7

    Article  CAS  PubMed  Google Scholar 

  21. Clarke EV, Benoit ME, Tenner AJ (2013) Purification of human monocytes and lymphocyte populations by counter current elutriation- a short protocol. Bio Protoc 3(23):e981. https://doi.org/10.21769/bioprotoc.981

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Meenhard Herlyn from the Wistar Institute and Gerald M. Feldman from the FDA for the intellectual and technical support for the development of this protocol.

Disclaimer: The views in this chapter have not been formally disseminated by the U.S. Food and Drug Administration and should not be construed to represent any agency determination or policy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, T., Kaufman, R.E. (2021). In Vitro Differentiation of Tumor-Associated Macrophages from Monocyte Precursors with Modified Melanoma-Conditioned Medium. In: Hargadon, K.M. (eds) Melanoma. Methods in Molecular Biology, vol 2265. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1205-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1205-7_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1204-0

  • Online ISBN: 978-1-0716-1205-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics