Skip to main content

Ras, Ral, and Rap1 in C. elegans

  • Protocol
  • First Online:
Ras Activity and Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2262))

Abstract

Characterizing the consequences of mutated Ras/LET-60 on the development of the C. elegans vulva has provided critical insights into the role of Ras in normal animal development. Furthermore, double mutant analysis revealed the role of Ras relative to other components of growth factor signal transduction. Here we describe the combined use of principles of parallelism and epistasis to investigate the use of different Ras effectors, Raf and RalGEF > Ral, during the development of the vulva and other tissues. We additionally describe the use of these principles to delineate the function of the close Ras relative, RAP-1. The worm continues to lead the way in clarifying otherwise poorly understood functions of Ras during animal development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ferguson EL, Horvitz HR (1985) Identification and characterization of 22 genes that affect the vulval cell lineages of the nematode Caenorhabditis elegans. Genetics 110(1):17–72

    Article  CAS  Google Scholar 

  2. Ferguson EL, Sternberg PW, Horvitz HR (1987) A genetic pathway for the specification of the vulval cell lineages of Caenorhabditis elegans. Nature 326(6110):259–267. https://doi.org/10.1038/326259a0

    Article  CAS  PubMed  Google Scholar 

  3. Greenwald IS, Sternberg PW, Horvitz HR (1983) The lin-12 locus specifies cell fates in Caenorhabditis elegans. Cell 34(2):435–444. https://doi.org/10.1016/0092-8674(83)90377-x

    Article  CAS  PubMed  Google Scholar 

  4. Beitel GJ, Clark SG, Horvitz HR (1990) Caenorhabditis elegans ras gene let-60 acts as a switch in the pathway of vulval induction. Nature 348(6301):503–509. https://doi.org/10.1038/348503a0

    Article  CAS  PubMed  Google Scholar 

  5. Han M, Aroian RV, Sternberg PW (1990) The let-60 locus controls the switch between vulval and nonvulval cell fates in Caenorhabditis elegans. Genetics 126(4):899–913

    Article  CAS  Google Scholar 

  6. Han M, Sternberg PW (1990) let-60, a gene that specifies cell fates during C. elegans vulval induction, encodes a ras protein. Cell 63(5):921–931. https://doi.org/10.1016/0092-8674(90)90495-z

    Article  CAS  PubMed  Google Scholar 

  7. Clark SG, Stern MJ, Horvitz HR (1992) C. elegans cell-signalling gene sem-5 encodes a protein with SH2 and SH3 domains. Nature 356(6367):340–344. https://doi.org/10.1038/356340a0

    Article  CAS  PubMed  Google Scholar 

  8. Pawson T (1992) Cell signalling. Conviction by genetics. Nature 356(6367):285–286. https://doi.org/10.1038/356285a0

    Article  CAS  PubMed  Google Scholar 

  9. Kornfeld K, Hom DB, Horvitz HR (1995) The ksr-1 gene encodes a novel protein kinase involved in Ras-mediated signaling in C. elegans. Cell 83(6):903–913

    Article  CAS  Google Scholar 

  10. Sundaram M, Han M (1995) The C. elegans ksr-1 gene encodes a novel Raf-related kinase involved in Ras-mediated signal transduction. Cell 83(6):889–901

    Article  CAS  Google Scholar 

  11. Bruinsma JJ, Jirakulaporn T, Muslin AJ, Kornfeld K (2002) Zinc ions and cation diffusion facilitator proteins regulate Ras-mediated signaling. Dev Cell 2(5):567–578. https://doi.org/10.1016/s1534-5807(02)00151-x

    Article  CAS  PubMed  Google Scholar 

  12. Yoder JH, Chong H, Guan KL, Han M (2004) Modulation of KSR activity in Caenorhabditis elegans by Zn ions, PAR-1 kinase and PP2A phosphatase. EMBO J 23(1):111–119. https://doi.org/10.1038/sj.emboj.7600025

    Article  CAS  PubMed  Google Scholar 

  13. Sternberg PW (2005) Vulval development. WormBook:1–28. https://doi.org/10.1895/wormbook.1.6.1

  14. Sundaram MV (2005) The love-hate relationship between Ras and Notch. Genes Dev 19(16):1825–1839. https://doi.org/10.1101/gad.1330605

    Article  CAS  PubMed  Google Scholar 

  15. Chen N, Greenwald I (2004) The lateral signal for LIN-12/Notch in C. elegans vulval development comprises redundant secreted and transmembrane DSL proteins. Dev Cell 6(2):183–192

    Article  CAS  Google Scholar 

  16. Braendle C, Felix MA (2008) Plasticity and errors of a robust developmental system in different environments. Dev Cell 15(5):714–724. https://doi.org/10.1016/j.devcel.2008.09.011

    Article  CAS  PubMed  Google Scholar 

  17. Berset T, Hoier EF, Battu G, Canevascini S, Hajnal A (2001) Notch inhibition of RAS signaling through MAP kinase phosphatase LIP-1 during C. elegans vulval development. Science 291(5506):1055–1058. https://doi.org/10.1126/science.1055642

    Article  CAS  PubMed  Google Scholar 

  18. Shaye DD, Greenwald I (2002) Endocytosis-mediated downregulation of LIN-12/Notch upon Ras activation in Caenorhabditis elegans. Nature 420(6916):686–690. https://doi.org/10.1038/nature01234

    Article  CAS  PubMed  Google Scholar 

  19. Shaye DD, Greenwald I (2005) LIN-12/Notch trafficking and regulation of DSL ligand activity during vulval induction in Caenorhabditis elegans. Development 132(22):5081–5092. https://doi.org/10.1242/dev.02076

    Article  CAS  PubMed  Google Scholar 

  20. Shin H, Reiner DJ (2018) The signaling network controlling C. elegans vulval cell fate patterning. J Dev Biol 6(4). https://doi.org/10.3390/jdb6040030

  21. Katz WS, Hill RJ, Clandinin TR, Sternberg PW (1995) Different levels of the C. elegans growth factor LIN-3 promote distinct vulval precursor fates. Cell 82(2):297–307

    Article  CAS  Google Scholar 

  22. Katz WS, Lesa GM, Yannoukakos D, Clandinin TR, Schlessinger J, Sternberg PW (1996) A point mutation in the extracellular domain activates LET-23, the Caenorhabditis elegans epidermal growth factor receptor homolog. Mol Cell Biol 16(2):529–537

    Article  CAS  Google Scholar 

  23. Sternberg PW, Horvitz HR (1986) Pattern formation during vulval development in C. elegans. Cell 44(5):761–772

    Article  CAS  Google Scholar 

  24. Sternberg PW, Horvitz HR (1988) lin-17 mutations of Caenorhabditis elegans disrupt certain asymmetric cell divisions. Dev Biol 130(1):67–73

    Article  CAS  Google Scholar 

  25. Sternberg PW, Horvitz HR (1989) The combined action of two intercellular signaling pathways specifies three cell fates during vulval induction in C. elegans. Cell 58(4):679–693

    Article  CAS  Google Scholar 

  26. Zand TP, Reiner DJ, Der CJ (2011) Ras effector switching promotes divergent cell fates in C. elegans vulval patterning. Dev Cell 20(1):84–96. https://doi.org/10.1016/j.devcel.2010.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shin H, Kaplan REW, Duong T, Fakieh R, Reiner DJ (2018) Ral signals through a MAP4 kinase-p38 MAP kinase cascade in C. elegans cell fate patterning. Cell Rep 24(10):2669–2681.e2665. https://doi.org/10.1016/j.celrep.2018.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Reiner DJ, Lundquist EA (2018) Small GTPases. WormBook:1–65. https://doi.org/10.1895/wormbook.1.67.2

  29. Rasmussen NR, Dickinson DJ, Reiner DJ (2018) Ras-dependent cell fate decisions are reinforced by the RAP-1 small GTPase in Caenorhabditis elegans. Genetics. https://doi.org/10.1534/genetics.118.301601

  30. Dickinson DJ, Ward JD, Reiner DJ, Goldstein B (2013) Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods 10(10):1028–1034. https://doi.org/10.1038/nmeth.2641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94

    Article  CAS  Google Scholar 

  32. Stiernagle T (2006) Maintenance of C. elegans. WormBook:1–11. https://doi.org/10.1895/wormbook.1.101.1

  33. Timmons L, Court DL, Fire A (2001) Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263(1–2):103–112. https://doi.org/10.1016/s0378-1119(00)00579-5

    Article  CAS  PubMed  Google Scholar 

  34. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D (2011) RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer 11(11):761–774. https://doi.org/10.1038/nrc3106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yochem J, Sundaram M, Han M (1997) Ras is required for a limited number of cell fates and not for general proliferation in Caenorhabditis elegans. Mol Cell Biol 17(5):2716–2722. https://doi.org/10.1128/mcb.17.5.2716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Eisenmann DM, Kim SK (1997) Mechanism of activation of the Caenorhabditis elegans ras homologue let-60 by a novel, temperature-sensitive, gain-of-function mutation. Genetics 146(2):553–565

    Article  CAS  Google Scholar 

  37. Schutzman JL, Borland CZ, Newman JC, Robinson MK, Kokel M, Stern MJ (2001) The Caenorhabditis elegans EGL-15 signaling pathway implicates a DOS-like multisubstrate adaptor protein in fibroblast growth factor signal transduction. Mol Cell Biol 21(23):8104–8116. https://doi.org/10.1128/MCB.21.23.8104-8116.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cui M, Chen J, Myers TR, Hwang BJ, Sternberg PW, Greenwald I, Han M (2006) SynMuv genes redundantly inhibit lin-3/EGF expression to prevent inappropriate vulval induction in C. elegans. Dev Cell 10(5):667–672. https://doi.org/10.1016/j.devcel.2006.04.001

    Article  CAS  PubMed  Google Scholar 

  39. Johnson AD, Fitzsimmons D, Hagman J, Chamberlin HM (2001) EGL-38 Pax regulates the ovo-related gene lin-48 during Caenorhabditis elegans organ development. Development 128(15):2857–2865

    Article  CAS  Google Scholar 

  40. Yoo AS, Bais C, Greenwald I (2004) Crosstalk between the EGFR and LIN-12/Notch pathways in C. elegans vulval development. Science 303(5658):663–666. https://doi.org/10.1126/science.1091639

    Article  CAS  PubMed  Google Scholar 

  41. Zhang X, Greenwald I (2011) Spatial regulation of lag-2 transcription during vulval precursor cell fate patterning in Caenorhabditis elegans. Genetics 188(4):847–858. https://doi.org/10.1534/genetics.111.128389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li J, Greenwald I (2010) LIN-14 inhibition of LIN-12 contributes to precision and timing of C. elegans vulval fate patterning. Curr Biol 20(20):1875–1879. https://doi.org/10.1016/j.cub.2010.09.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. de la Cova C, Townley R, Regot S, Greenwald I (2017) A real-time biosensor for ERK activity reveals signaling dynamics during C. elegans cell fate specification. Dev Cell 42(5):542–553.e544. https://doi.org/10.1016/j.devcel.2017.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Barkoulas M, van Zon JS, Milloz J, van Oudenaarden A, Felix MA (2013) Robustness and epistasis in the C. elegans vulval signaling network revealed by pathway dosage modulation. Dev Cell 24(1):64–75. https://doi.org/10.1016/j.devcel.2012.12.001

    Article  CAS  PubMed  Google Scholar 

  45. Yochem JK (2006) Nomarski images for learning the anatomy, with tips for mosaic analysis. WormBook:1–47. https://doi.org/10.1895/wormbook.1.100.1

  46. Kamath RS, Martinez-Campos M, Zipperlen P, Fraser AG, Ahringer J (2001) Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol 2(1):RESEARCH0002. https://doi.org/10.1186/gb-2000-2-1-research0002

    Article  CAS  PubMed  Google Scholar 

  47. Shin H, Braendle C, Monahan KB, Kaplan REW, Zand TP, Mote FS, Peters EC, Reiner DJ (2019) Developmental fidelity is imposed by genetically separable RalGEF activities that mediate opposing signals. PLoS Genet 15(5):e1008056. https://doi.org/10.1371/journal.pgen.1008056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kelly WG, Xu S, Montgomery MK, Fire A (1997) Distinct requirements for somatic and germline expression of a generally expressed Caernorhabditis elegans gene. Genetics 146(1):227–238

    Article  CAS  Google Scholar 

  49. Merritt C, Seydoux G (2010) Transgenic solutions for the germline. WormBook:1–21. https://doi.org/10.1895/wormbook.1.148.1

  50. Nance J, Frokjaer-Jensen C (2019) The Caenorhabditis elegans transgenic toolbox. Genetics 212(4):959–990. https://doi.org/10.1534/genetics.119.301506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sulston JE, Horvitz HR (1977) Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 56(1):110–156. https://doi.org/10.1016/0012-1606(77)90158-0

    Article  CAS  PubMed  Google Scholar 

  52. Arur S, Ohmachi M, Nayak S, Hayes M, Miranda A, Hay A, Golden A, Schedl T (2009) Multiple ERK substrates execute single biological processes in Caenorhabditis elegans germ-line development. Proc Natl Acad Sci U S A 106(12):4776–4781. https://doi.org/10.1073/pnas.0812285106

    Article  PubMed  PubMed Central  Google Scholar 

  53. Nakdimon I, Walser M, Frohli E, Hajnal A (2012) PTEN negatively regulates MAPK signaling during Caenorhabditis elegans vulval development. PLoS Genet 8(8):e1002881. https://doi.org/10.1371/journal.pgen.1002881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by R01GM121625 and R21HD090707 to D.J.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Reiner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rasmussen, N.R., Reiner, D.J. (2021). Ras, Ral, and Rap1 in C. elegans. In: Rubio, I., Prior, I. (eds) Ras Activity and Signaling. Methods in Molecular Biology, vol 2262. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1190-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1190-6_26

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1189-0

  • Online ISBN: 978-1-0716-1190-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics