Skip to main content

RASless MEFs as a Tool to Study RAS-Dependent and RAS-Independent Functions

  • Protocol
  • First Online:
Ras Activity and Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2262))

Abstract

RAS proteins are key players in multiple cellular processes. To study the role of RAS proteins individually or in combination, we have developed MEFs that can be rendered RASless, i.e., devoid of all endogenous RAS isoforms. These cells have significantly contributed to our understanding of the requirements for RAS functions in cell proliferation as well as their implications in diverse cellular processes. Here, we describe methods using RASless MEFs to study RAS-dependent cellular activities with special emphasis on proliferation. We provide the details to identify inducers of RAS-independent proliferation in colony assays. We recommend following these stringent guidelines to avoid false-positive results. Moreover, this protocol can be adapted to generate RASless MEFs ectopically expressing RAS variants to interrogate their function in the absence of endogenous RAS isoforms or to perform experiments in the absence of RAS. Finally, we also describe protocols to generate and use RASless MEFs for cell cycle analyses using the FUCCI cell cycle indicator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Malumbres M, Barbacid M (2003) RAS oncogenes: the first 30 years. Nat Rev Cancer 3:459–465

    Article  CAS  Google Scholar 

  2. Coleman ML, Marshall CJ, Olsen MF (2004) RAS and RHO GTPases in G1-phase cell-cycle regulation. Nat Rev Mol Cell Biol 5:355–366

    Article  CAS  Google Scholar 

  3. Campbell PM (2014) Oncogenic Ras pushes (and pulls) cell cycle progression through ERK activation. Methods Mol Biol 1170:155–163

    Article  Google Scholar 

  4. Simanshu DK, Nissley DV, McCormick F (2017) RAS proteins and their regulators in human disease. Cell 170:17–33

    Article  CAS  Google Scholar 

  5. Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129:865–877

    Article  CAS  Google Scholar 

  6. Karnoub AE, Weinberg RA (2008) Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 9:517–531

    Article  CAS  Google Scholar 

  7. Castellano E, Santos E (2011) Functional specificity of ras isoforms: so similar but so different. Genes Cancer 2:216–231

    Article  CAS  Google Scholar 

  8. Esteban LM, Vicario-Abejón C, Fernández-Salguero P, Fernández-Medarde A, Swaminathan N, Yienger K et al (2001) Targeted genomic disruption of H-ras and N-ras, individually or in combination, reveals the dispensability of both loci for mouse growth and development. Mol Cell Biol 21:1444–1452

    Article  CAS  Google Scholar 

  9. Fuentes-Mateos R, Jimeno D, Gómez C, Calzada N, Fernández-Medarde A, Santos E (2019) Concomitant deletion of HRAS and NRAS leads to pulmonary immaturity, respiratory failure and neonatal death in mice. Cell Death Dis 10:838

    Article  Google Scholar 

  10. Johnson L, Greenbaum D, Cichowski K, Mercer K, Murphy E, Schmitt E et al (1997) K-ras is an essential gene in the mouse with partial functional overlap with N-ras. Genes Dev 11:2468–2481

    Article  CAS  Google Scholar 

  11. Koera K, Nakamura K, Nakao K, Miyoshi J, Toyoshima K, Hatta T et al (1997) K-ras is essential for the development of the mouse embryo. Oncogene 15:1151–1159

    Article  CAS  Google Scholar 

  12. Potenza N, Vecchione C, Notte A, De Rienzo A, Rosica A, Bauer L et al (2005) Replacement of K-Ras with H-Ras supports normal embryonic development despite inducing cardiovascular pathology in adult mice. EMBO Rep 6:432–437

    Article  CAS  Google Scholar 

  13. Drosten M, Simón-Carrasco L, Hernández-Porras I, Lechuga CG, Blasco MT, Jacob HKC et al (2017) H-Ras and K-Ras oncoproteins induce different tumor spectra when driven by the same regulatory sequences. Cancer Res 77:707–718

    Article  CAS  Google Scholar 

  14. Drosten M, Dhawahir A, Sum EYM, Urosevic J, Lechuga CG, Esteban LM et al (2010) Genetic analysis of Ras signalling pathways in cell proliferation, migration and survival. EMBO J 29:1091–1104

    Article  CAS  Google Scholar 

  15. Yan J, Roy S, Apolloni A, Lane A, Hancock JF (1998) Ras isoforms vary in their ability to activate Raf-1 and phosphoinositide 3-kinase. J Biol Chem 273:24052–24056

    Article  CAS  Google Scholar 

  16. Terrell EM, Durrant DE, Ritt DA, Sealover NE, Sheffels E, Spencer-Smith R et al (2019) Distinct binding preferences between Ras and Raf family members and the impact on oncogenic Ras signaling. Mol Cell 76:872–884

    Article  CAS  Google Scholar 

  17. Amendola CR, Mahaffey JP, Parker SJ, Ahearn IM, Chen WC, Zhou M et al (2019) KRAS4A directly regulates hexokinase 1. Nature 576:482–486

    Article  CAS  Google Scholar 

  18. Drosten M, Sum EYM, Lechuga CG, Simón-Carrasco L, Jacob HKC, García-Medina R et al (2014) Loss of p53 induces cell proliferation via Ras-independent activation of the Raf/Mek/Erk signaling pathway. Proc Natl Acad Sci U S A 111:15155–15160

    Article  CAS  Google Scholar 

  19. Vasjari L, Bresan S, Biskup C, Pai G, Rubio I (2019) Ras signals principally via Erk in G1 but cooperates with PI3K/Akt for Cyclin D induction and S-phase entry. Cell Cycle 18:204–225

    Article  CAS  Google Scholar 

  20. Drosten M, Barbacid M (2016) Ras and p53: an unsuspected liaison. Mol Cell Oncol 3:e996001

    Article  Google Scholar 

  21. Yang H, Xiang S, Kazi A, Sebti SM (2020) The GTPase KRAS suppresses the P53 tumor suppressor by activating the NFR2-regulated antioxidant defense system in cancer cells. J Biol Chem pii:jbc.RA119.011930 [Epub ahead of print]

    Google Scholar 

  22. Niviaux RK, Costanzi E, Haas M, Verma IM (1996) The pCL vector system: rapid production of helper-free, high-titer, recombinant retroviruses. J Virol 70:5701–5705

    Article  Google Scholar 

  23. Sakaue-Sawano A, Hurokawa H, Morimura T, Hanyu A, Hama H, Osawa H et al (2008) Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132:487–498

    Article  CAS  Google Scholar 

  24. Waters AM, Ozkan-Dagliyan I, Vaseva AV, Fer N, Strathern LA, Hobbs GA et al (2017) Evaluation of the selectivity and sensitivity of isoform- and mutation-specific RAS antibodies. Sci Signal 10:eaao3332

    Article  Google Scholar 

  25. Waters AM, Der C (2020) Validation of isoform- and mutation-specific RAS antibodies, in this issue

    Google Scholar 

  26. Ambrogio C, Köhler J, Zhou ZW, Wang H, Paranal R, Li J et al (2018) KRAS dimerization impacts MEK inhibitor sensitivity and oncogenic activity of mutant KRAS. Cell 172:857–868

    Article  CAS  Google Scholar 

  27. Song SP, Henning A, Schubert K, Markwart R, Schmidt P, Prior IA et al (2013) Ras palmitoylation is necessary for N-Ras activation and signal propagation in growth factor signaling. Biochem J 454:323–332

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Drosten .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Proliferation of KrasloxFUCCI cells stably expressing the monomeric version of Kusabira Orange 2 (mKO2)/human chromatin licensing and DNA replication factor 1 (hCdt1) (red) and the monomeric version of Azami Green (mAG)/human Geminin (hGeminin) (green). The video was generated by taking one image every 10 min for 50 h (10 frames/s) (MP4 2384 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lechuga, C.G., Salmón, M., Paniagua, G., Guerra, C., Barbacid, M., Drosten, M. (2021). RASless MEFs as a Tool to Study RAS-Dependent and RAS-Independent Functions. In: Rubio, I., Prior, I. (eds) Ras Activity and Signaling. Methods in Molecular Biology, vol 2262. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1190-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1190-6_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1189-0

  • Online ISBN: 978-1-0716-1190-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics