Skip to main content

Isolation and Purification of Mitochondria from Cell Culture for Proteomic Analyses

  • Protocol
  • First Online:
Proteomic Profiling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2261))

Abstract

In-depth analysis of the mitochondrial proteome can be greatly improved by analyzing isolated mitochondria instead of whole cells. However, isolation of sufficient amounts of mitochondria from cell culture has proven to be notoriously difficult due to small sample size. Thus, we have developed a reproducible, controllable, and highly customizable method to isolate high microgram to low milligram amounts of intact mitochondria from cell culture samples along with an optional density gradient purification. This chapter provides a methodological update of our approach and underlines the excellent quality and coverage of the mitochondrial proteome of crude and purified mitochondria from cultured liver cancer cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spinelli JB, Haigis MC (2018) The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol 20(7):745–754

    Article  CAS  Google Scholar 

  2. Giorgi C, Marchi S, Simoes ICM et al (2018) Mitochondria and reactive oxygen species in aging and age-related diseases. Int Rev Cell Mol Biol 430:209–344

    Article  Google Scholar 

  3. Einer C, Hohenester S, Wimmer R et al (2018) Mitochondrial adaptation in steatotic mice. Mitochondrion 40:1–12

    Article  CAS  Google Scholar 

  4. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629

    Article  CAS  Google Scholar 

  5. Einer C, Leitzinger C, Lichtmannegger J et al (2019) A high-calorie diet aggravates mitochondrial dysfunction and triggers severe liver damage in Wilson disease rats. Cell Mol Gastroenterol Hepatol 7(3):571–596

    Article  Google Scholar 

  6. Neupert W (1997) Protein import into mitochondria. Annu Rev Biochem 66:863–917

    Article  CAS  Google Scholar 

  7. Lichtmannegger J, Leitzinger C, Wimmer R et al (2016) Methanobactin reverses acute liver failure in a rat model of Wilson disease. J Clin Invest 126:2721–2735

    Article  Google Scholar 

  8. Polishchuk EV, Merolla A, Lichtmannegger J et al (2019) Activation of autophagy, observed in liver tissues from patients with Wilson disease and from ATP7B-deficient animals, protects hepatocytes from copper-induced apoptosis. Gastroenterology 156(4):1173–1189.e5

    Article  CAS  Google Scholar 

  9. Zischka H, Einer C (2018) Mitochondrial copper homeostasis and its derailment in Wilson disease. Int J Biochem Cell Biol 102:71–75

    Article  CAS  Google Scholar 

  10. Bugger H, Chen D, Riehle C et al (2009) Tissue-specific remodeling of the mitochondrial proteome in type 1 diabetic Akita mice. Diabetes 58(9):1986–1997

    Article  CAS  Google Scholar 

  11. Verma M, Kagan J, Sidransky D et al (2003) Proteomic analysis of cancer-cell mitochondria. Nat Rev Cancer 3(10):789–795

    Article  CAS  Google Scholar 

  12. Sullivan LB, Luengo A, Danai LV et al (2018) Aspartate is an endogenous metabolic limitation for tumour growth. Nat Cell Biol 20(7):782–788

    Article  CAS  Google Scholar 

  13. Weinberg SE, Chandel NS (2015) Targeting mitochondria metabolism for cancer therapy. Nat Chem Biol 11(1):9–15

    Article  CAS  Google Scholar 

  14. Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435(Pt 2):297–312

    Article  CAS  Google Scholar 

  15. Balch WE, Rothman JE (1985) Characterization of protein transport between successive compartments of the Golgi apparatus: asymmetric properties of donor and acceptor activities in a cell-free system. Arch Biochem Biophys 240:413–425

    Article  CAS  Google Scholar 

  16. Schmitt S, Eberhagen C, Weber S et al (2015) Isolation of mitochondria from cultured cells and liver tissue biopsies for molecular and biochemical analyses. Methods Mol Biol 1295:87–97

    Article  CAS  Google Scholar 

  17. Schmitt S, Saathoff F, Meissner L et al (2013) A semi-automated method for isolating functionally intact mitochondria from cultured cells and tissue biopsies. Anal Biochem 443:66–67

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Zischka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kabiri, Y., von Toerne, C., Fontes, A., Knolle, P.A., Zischka, H. (2021). Isolation and Purification of Mitochondria from Cell Culture for Proteomic Analyses. In: Posch, A. (eds) Proteomic Profiling. Methods in Molecular Biology, vol 2261. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1186-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1186-9_25

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1185-2

  • Online ISBN: 978-1-0716-1186-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics