Skip to main content

Profiling Protein–DNA Interactions by Chromatin Immunoprecipitation in Arabidopsis

  • Protocol
  • First Online:
Proteomic Profiling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2261))

Abstract

In plant cells, transcription factors play an important role in the regulation of gene expression, which eventually leads to the formation of complex phenotypes. Although chromatin immunoprecipitation (ChIP) involves a lengthy process that requires up to 4 days to complete, it is a powerful technique to investigate the interactions between transcription factors and their target sequences in vivo. Here, we describe a detailed ChIP protocol, focusing on ChIP-qPCR, from material collection to data analyses. Moreover, we explain multiple checkpoints for the quality control of ChIP-qPCR data to ensure the success of this protocol. As this protocol is robust, it can be adapted to other plant materials and plant species, and it can be used for genome-wide profiling experiments, including ChIP-chip and ChIP-seq analyses. We believe that our ChIP-qPCR protocol facilitates research on the interactions between plant transcription factors and their target sequences in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 a resolution. Nature 389(6648):251–260. https://doi.org/10.1038/38444

    Article  CAS  PubMed  Google Scholar 

  2. Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128(4):707–719. https://doi.org/10.1016/j.cell.2007.01.015

    Article  CAS  PubMed  Google Scholar 

  3. Voss TC, Hager GL (2013) Dynamic regulation of transcriptional states by chromatin and transcription factors. Nat Rev Genet 15(2):69–81. https://doi.org/10.1038/nrg3623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Franco-Zorrilla JM, López-Vidriero I, Carrasco JL, Godoy M, Vera P, Solano R (2014) DNA-binding specificities of plant transcription factors and their potential to define target genes. Proc Natl Acad Sci U S A 111(6):2367–2372. https://doi.org/10.1073/pnas.1316278111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Inukai S, Kock KH, Bulyk ML (2017) Transcription factor–DNA binding: beyond binding site motifs. Curr Opin Genet Dev 43:110–119. https://doi.org/10.1016/j.gde.2017.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zaret KS, Carroll JS (2011) Pioneer transcription factors: establishing competence for gene expression. Genes Dev 25(21):2227–2241. https://doi.org/10.1101/gad.176826.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gilmour DS, Lis JT (1984) Detecting protein-DNA interactions in vivo: distribution of RNA polymerase on specific bacterial genes. Proc Natl Acad Sci U S A 81(14):4275–4279. https://doi.org/10.1073/pnas.81.14.4275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Solomon MJ, Larsen PL, Varshavsky A (1988) Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell 53(6):937–947. https://doi.org/10.1016/s0092-8674(88)90469-2

    Article  CAS  PubMed  Google Scholar 

  9. Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG, Simon I, Zeitlinger J, Schreiber J, Hannett N, Kanin E, Volkert TL, Wilson CJ, Bell SP, Young RA (2000) Genome-wide location and function of DNA binding proteins. Science 290(5500):2306–2309. https://doi.org/10.1126/science.290.5500.2306

    Article  CAS  PubMed  Google Scholar 

  10. Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316(5830):1497–1502. https://doi.org/10.1126/science.1141319

    Article  CAS  PubMed  Google Scholar 

  11. Zhong J, Ye Z, Lenz SW, Clark CR, Bharucha A, Farrugia G, Robertson KD, Zhang Z, Ordog T, Lee J-H (2017) Purification of nanogram-range immunoprecipitated DNA in ChIP-seq application. BMC Genomics 18(1). https://doi.org/10.1186/s12864-017-4371-5

  12. Yamaguchi N, Winter CM, Wu M-F, Kwon CS, William DA, Wagner D (2014) PROTOCOL: chromatin immunoprecipitation from Arabidopsis tissues. Arabidopsis Book 12:e0170. https://doi.org/10.1199/tab.0170

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hwang K, Susila H, Nasim Z, Jung J-Y, Ahn JH (2019) Arabidopsis ABF3 and ABF4 transcription factors act with the NF-YC complex to regulate SOC1 expression and mediate drought-accelerated flowering. Mol Plant 12(4):489–505. https://doi.org/10.1016/j.molp.2019.01.002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a National Research Foundation (NRF) of Korea grant funded by the Korean government (NRF-2017R1A2B3009624 to J.H.A) and Samsung Science and Technology Foundation (SSTF-BA1602-12 to J.H.A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Hoon Ahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Susila, H. et al. (2021). Profiling Protein–DNA Interactions by Chromatin Immunoprecipitation in Arabidopsis. In: Posch, A. (eds) Proteomic Profiling. Methods in Molecular Biology, vol 2261. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1186-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1186-9_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1185-2

  • Online ISBN: 978-1-0716-1186-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics