Skip to main content

Multiplex Fluorescent Bead-Based Immunoassay for the Detection of Cytokines, Chemokines, and Growth Factors

  • Protocol
  • First Online:
Proteomic Profiling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2261))

Abstract

The comprehensive analysis of serum cytokine levels can be challenging due to low sample volumes and time consuming when using single-target methods like enzyme-linked immunosorbent assay (ELISA). Bead-based detection systems allow the simultaneous detection of multiple analytes using minimal sample volumes. Here we describe the use of a multiplex cytokine, chemokine, and growth factor assay for mouse cytokines in a 96-well format. This assay is based on antibody-coupled fluorescent magnetic beads combined with biotinylated secondary detection antibody followed by fluorescent-tagged streptavidin in a sandwich-like composition. Final assay readout provides the concentrations of 23 different cytokines, chemokines, and growth factors in up to 76 samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murphy K, Weaver C (2017) Janeway’s Immunobiology, 9th edn. Garland Science, Taylor & Francis Group, LLC, New York, pp 9–10

    Google Scholar 

  2. Husband AJ (1995) The immune system and integrated homeostasis. Immunol Cell Biol 73:377–382. https://doi.org/10.1111/j.1440-1711.1995.tb03883.x

    Article  CAS  PubMed  Google Scholar 

  3. Zwirner NW, Fuertes MB, Domaica CI (2019) Innate lymphoid cells. New player in tissue homeostasis and inflammatory responses. Medicina (B Aires) 79:564–569

    CAS  Google Scholar 

  4. Opal SM, DePalo VA (2000) Anti-inflammatory cytokines. Chest 117:1162–1172. https://doi.org/10.1378/chest.117.4.1162

    Article  CAS  PubMed  Google Scholar 

  5. Dinarello CA (2000) Proinflammatory cytokines. Chest 118:503–508. https://doi.org/10.1378/chest.118.2.503

    Article  CAS  PubMed  Google Scholar 

  6. Houser B (2012) Bio-rad’s bio-Plex® suspension array system, xMAP technology overview. Arch Physiol Biochem 118:192–196. https://doi.org/10.3109/13813455.2012.705301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ezure H, Kimura T, Ogawa S, Ito E (1997) Magnetic orientation of isotactic polystyrene. Macromolecules 30:3600–3605. https://doi.org/10.1021/ma970077g

    Article  CAS  Google Scholar 

  8. Wepler M, Preuss JM, Merz T et al (2020) Impaired glucocorticoid receptor dimerization aggravates LPS-induced circulatory and pulmonary dysfunction. Front Immunol 10:3152. https://doi.org/10.3389/fimmu.2019.03152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Reichstein T., Shoppee CW (1943) Hormones of the adrenal cortex. Vitam Horm 1:345–413. https://doi.org/10.1210/endo-30-6-853

    Article  Google Scholar 

  10. Silverman MN, Mukhopadhyay P, Belyavskaya E et al (2013) Glucocorticoid receptor dimerization is required for proper recovery of LPS-induced inflammation, sickness behavior and metabolism in mice. Mol Psychiatry 18:1006–1017. https://doi.org/10.1038/mp.2012.131

    Article  CAS  PubMed  Google Scholar 

  11. Cain DW, Cidlowski JA (2017) Immune regulation by glucocorticoids. Nat Rev Immunol 17:233–247. https://doi.org/10.1038/nri.2017.1

    Article  CAS  PubMed  Google Scholar 

  12. Tuckermann JP, Kleiman A, McPherson KG, Reichardt HM (2005) Molecular mechanisms of glucocorticoids in the control of inflammation and lymphocyte apoptosis. Crit Rev Clin Lab Sci 42:71–104. https://doi.org/10.1080/10408360590888983

    Article  CAS  PubMed  Google Scholar 

  13. Diamond MI, Miner JN, Yoshinaga SK, Yamamoto KR (1990) Transcription factor interactions : selectors of positive or negative regulation from a single DNA element. Science 249:1266–1272. https://doi.org/10.1126/science.2119054

    Article  CAS  PubMed  Google Scholar 

  14. Heck S, Kullmann M, Gast A et al (1994) A distinct modulating domain in glucocorticoid receptor monomers in the repression of activity of the transcription factor AP-1. EMBO J 13:4087–4095. https://doi.org/10.1002/j.1460-2075.1994.tb06726.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Okamoto K, Hirano H, Isohashi F (1993) Molecular cloning of rat liver glucocorticoid-receptor translocation promotor. Biochem Biophys Res Commun 193:848–854

    Article  CAS  PubMed  Google Scholar 

  16. Young HA, Shih TY, Scolnick EM, Parks WP (1977) Steroid induction of mouse mammary tumor virus: effect upon synthesis and degradation of viral RNA. J Virol 21:139–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Baschant U, Tuckermann J (2010) The role of the glucocorticoid receptor in inflammation and immunity. J Steroid Biochem Mol Biol 120:69–75. https://doi.org/10.1016/j.jsbmb.2010.03.058

    Article  CAS  PubMed  Google Scholar 

  18. Scheinman RI, Gualberto A, Jewell CM et al (1995) Characterization of mechanisms involved in transrepression of NF-kappa B by activated glucocorticoid receptors. Mol Cell Biol 15:943–953. https://doi.org/10.1128/mcb.15.2.943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jonat C, Rahmsdorf HJ, Park K-K et al (1990) Antitumor promotion and Antiinflammation: Down-modulation of AP-1 (Fos/Jun) activity by glucocorticoid hormone. Cell 62:1189–1204

    Article  CAS  PubMed  Google Scholar 

  20. Lim H, Uhlenhaut NH, Rauch A et al (2014) Genomic redistribution of GR monomers and dimers mediates transcription response to exogenous glucocorticoid in vivo. Genome Res 25:836–844. https://doi.org/10.1101/gr.188581.114.10

    Article  Google Scholar 

  21. Reichardt HM, Kaestner KH, Tuckermann J et al (1998) DNA binding of the glucocorticoid receptor is not essential for survival. Cell 93:531–541. https://doi.org/10.1016/S0092-8674(00)81183-6

    Article  CAS  PubMed  Google Scholar 

  22. Bledsoe RK, Montana VG, Stanley TB et al (2002) Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition. Cell 110:93–105. https://doi.org/10.1016/S0092-8674(02)00817-6

    Article  CAS  PubMed  Google Scholar 

  23. Vandevyver S, Tuckermann J, Libert C et al (2012) Glucocorticoid receptor dimerization induces MKP1 to protect against TNF-induced inflammation. J Clin Invest 122:2130–2140. https://doi.org/10.1172/JCI60006.2130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hübner S, Dejager L, Libert C, Tuckermann JP (2015) The glucocorticoid receptor in inflammatory processes : transrepression is not enough. Biol Chem 396(11):1223–1231. https://doi.org/10.1515/hsz-2015-0106

    Article  CAS  PubMed  Google Scholar 

  25. Kleiman A, Tuckermann JP (2007) Glucocorticoid receptor action in beneficial and side effects of steroid therapy: lessons from conditional knockout mice. Mol Cell Endocrinol 275:98–108. https://doi.org/10.1016/j.mce.2007.05.009

    Article  CAS  PubMed  Google Scholar 

  26. Hachemi Y, Rapp AE, Picke AK et al (2018) Molecular mechanisms of glucocorticoids on skeleton and bone regeneration after fracture. J Mol Endocrinol 61:R75–R90. https://doi.org/10.1530/JME-18-0024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Oasa S, Mikuni S, Yamamoto J et al (2018) Relationship between Homodimeric glucocorticoid receptor and transcriptional regulation assessed via an in vitro fluorescence correlation spectroscopy-microwell system. Sci Rep 8:1–14. https://doi.org/10.1038/s41598-018-25393-w

    Article  CAS  Google Scholar 

  28. Tuckermann JP, Kleiman A, Moriggl R et al (2007) Macrophages and neutrophils are the targets for immune suppression by glucocorticoids in contact allergy. J Clin Invest 117:1381–1390. https://doi.org/10.1172/JCI28034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Baschant U, Frappart L, Rauchhaus U et al (2011) Glucocorticoid therapy of antigen-induced arthritis depends on the dimerized glucocorticoid receptor in T cells. Proc Natl Acad Sci U S A 108:19317–19322. https://doi.org/10.1073/pnas.1105857108

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kleiman A, Hübner S, Rodriguez Parkitna JM et al (2011) Glucocorticoid receptor dimerization is required for survival in septic shock via suppression of interleukin-1 in macrophages. FASEB J 26:1–8. https://doi.org/10.1096/fj.11-192112

    Article  CAS  Google Scholar 

  31. Vettorazzi S, Bode C, Dejager L et al (2015) Glucocorticoids limit acute lung inflammation in concert with inflammatory stimuli by induction of SphK1. Nat Commun 6:1–12. https://doi.org/10.1038/ncomms8796

    Article  CAS  Google Scholar 

  32. Guillon A, Preau S, Aboab J et al (2019) Preclinical septic shock research: why we need an animal ICU. Ann Intensive Care 9:66. https://doi.org/10.1186/s13613-019-0543-6

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jonathan M. Preuss or Sabine Vettorazzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Preuss, J.M., Burret, U., Vettorazzi, S. (2021). Multiplex Fluorescent Bead-Based Immunoassay for the Detection of Cytokines, Chemokines, and Growth Factors. In: Posch, A. (eds) Proteomic Profiling. Methods in Molecular Biology, vol 2261. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1186-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1186-9_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1185-2

  • Online ISBN: 978-1-0716-1186-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics