Skip to main content

Utilization of Laser Capture Microdissection Coupled to Mass Spectrometry to Uncover the Proteome of Cellular Protrusions

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2259))

Abstract

Laser capture microdissection (LCM) provides a fast, specific, and versatile method to isolate and enrich cells in mixed populations and/or subcellular structures, for further proteomic study. Furthermore, mass spectrometry (MS) can quickly and accurately generate differential protein expression profiles from small amounts of samples. Although cellular protrusions—such as tunneling nanotubes, filopodia, growth cones, invadopodia, etc.—are involved in essential physiological and pathological actions such as phagocytosis or cancer-cell invasion, the study of their protein composition is progressing slowly due to their fragility and transient nature. The method described herein, combining LCM and MS, has been designed to identify the proteome of different cellular protrusions. First, cells are fixed with a novel fixative method to preserve the cellular protrusions, which are isolated by LCM. Next, the extraction of proteins from the enriched sample is optimized to de-crosslink the fixative agent to improve the identification of proteins by MS. The efficient protein recovery and high sample quality of this method enable the protein profiling of these small and diverse subcellular structures.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hanson JC, Tangrea MA, Kim S et al (2011) Emmert-Buck, Expression microdissection adapted to commercial laser dissection instruments. Nat Protoc 6:457–467

    Article  CAS  Google Scholar 

  2. Grünewald A, Rygiel KA, Hepplewhite PD et al (2016) Mitochondrial DNA depletion in respiratory chain-deficient Parkinson disease neurons. Ann Neurol 79:366–378

    Article  Google Scholar 

  3. Drummond ES, Nayak S, Ueberheide B, Wisniewski T (2015) Proteomic analysis of neurons microdissected from formalin-fixed, paraffin-embedded Alzheimer’s disease brain tissue. Sci Rep 5:15456

    Article  CAS  Google Scholar 

  4. Nawandar DM, Wang A, Makielski K et al (2015) Differentiation-dependent KLF4 expression promotes lytic Epstein-Barr virus infection in epithelial cells. PLoS Pathog 11:e1005195

    Article  Google Scholar 

  5. Pflugradt R, Schmidt U, Landenberger B et al (2011) A novel and effective separation method for single mitochondria analysis. Mitochondrion 11:308–314

    Article  CAS  Google Scholar 

  6. Zivraj KH, Tung YC, Piper M (2010) Subcellular profiling reveals distinct and developmentally regulated repertoire of growth cone mRNAs. J Neurosci 30:15464–15478

    Article  CAS  Google Scholar 

  7. Ezzoukhry Z, Henriet E, Cordelières FP (2018) Combining laser capture microdissection and proteomics reveals an active translation machinery controlling invadosome formation. Nat Commun 9:2031

    Article  Google Scholar 

  8. Gutstein HB, Morris JS, Annangudi SP, Sweedler JV (2008) Microproteomics: analysis of protein diversity in small samples. Mass Spectrom Rev 27:316–330

    Article  CAS  Google Scholar 

  9. Gambade A, Zreika S, Guéguinou M et al (2016) Activation of TRPV2 and BKCa channels by the LL-37 enantiomers stimulates calcium entry and migration of cancer cells. Oncotarget. https://doi.org/10.18632/oncotarget.8122

  10. Costanzo M, Abounit S, Marzo L et al (2013) Transfer of polyglutamine aggregates in neuronal cells occurs in tunneling nanotubes. J Cell Sci 126:3678–3685

    Article  CAS  Google Scholar 

  11. Möller J, Lühmann T, Chabria M et al (2013) Macrophages lift off surface-bound bacteria using a filopodium-lamellipodium hook-and-shovel mechanism. Sci Rep 3:2884

    Article  Google Scholar 

  12. Dent EW, Gupton SL, Gertler FB (2011) The growth cone cytoskeleton in axon outgrowth and guidance. Cold Spring Harb Perspect Biol 3:a001800

    Article  Google Scholar 

  13. Van Audenhove I, Denert M, Boucherie C et al (2016) Fascin rigidity and L-plastin flexibility cooperate in cancer cell invadopodia and filopodia. J Biol Chem 291:9148–9160

    Article  Google Scholar 

  14. Gousset K, Schiff E, Langevin C et al (2009) Prions hijack tunnelling nanotubes for intercellular spread. Nat Cell Biol 11:328–336

    Article  CAS  Google Scholar 

  15. Eugenin EA, Gaskill PJ, Berman JW (2009) Tunneling nanotubes (TNT) are induced by HIV-infection of macrophages: a potential mechanism for intercellular HIV trafficking. Cell Immunol 254:142–148

    Article  CAS  Google Scholar 

  16. Thayanithy V, Dickson EL, Steer C et al (2014) Tumor-stromal cross talk: direct cell-to-cell transfer of oncogenic microRNAs via tunneling nanotubes. Transl Res 164:359–365

    Article  CAS  Google Scholar 

  17. Brayford S, Bryce NS, Schevzov G et al (2016) Tropomyosin promotes lamellipodial persistence by collaborating with Arp2/3 at the leading edge. Curr Biol 26(10):1312–1318

    Article  CAS  Google Scholar 

  18. Sherer NM, Mothes W (2008) Cytonemes and tunneling nanotubules in cell-cell communication and viral pathogenesis. Trends Cell Biol 18:414–420

    Article  CAS  Google Scholar 

  19. Thomsen R, Lade Nielsen A (2011) A Boyden chamber-based method for characterization of astrocyte protrusion localized RNA and protein. Glia 59:1782–1792

    Article  Google Scholar 

  20. Kadiu I, Gendelman HE (2011) Human immunodeficiency virus type 1 endocytic trafficking through macrophage bridging conduits facilitates spread of infection. J Neuroimmune Pharmacol 6:658–675

    Article  Google Scholar 

  21. Mili S, Moissoglu K, Macara IG (2008) Genome-wide screen identifies localized RNAs anchored at cell protrusions through microtubules and APC. Nature 453:115–119

    Article  CAS  Google Scholar 

  22. Mimae T, Ito A (2015) New challenges in pseudopodial proteomics by a laser-assisted cell etching technique. Biochim Biophys Acta 1854:538–546

    Article  CAS  Google Scholar 

  23. Gousset K, Marzo L, Commere P, Zurzolo C (2013) Myo10 is a key regulator of TNT formation in neuronal cells. J Cell Sci 126:4424–4435

    Article  CAS  Google Scholar 

  24. Eltoum I, Fredenburgh J, Myers RB, Grizzle WE (2001) Introduction to the theory and practice of fixation of tissues. J Histotechnol 24:173–190

    Article  CAS  Google Scholar 

  25. Gosselin MA, Guo W, Lee RJ (2001) Efficient gene transfer using reversibly cross-linked low molecular weight polyethylenimine. Bioconjug Chem 12:989–994

    Article  CAS  Google Scholar 

  26. Gordon A, Kannan SK, Gousset K (2018) A novel cell fixation method that greatly enhances protein identification in microproteomic studies using laser capture microdissection and mass spectrometry. Proteomics 18:e1700294

    Article  Google Scholar 

  27. Gousset K, Gordon A, Kumar Kannan S, Tovar J (2019) A novel microproteomic approach using laser capture microdissection to study cellular protrusions. Int J Mol Sci 20:1172

    Article  CAS  Google Scholar 

  28. Osswald M, Jung E, Sahm F et al (2015) Brain tumour cells interconnect to a functional and resistant network. Nature 528:93–98

    Article  CAS  Google Scholar 

  29. Desir S, Dickson EL, Vogel RI et al (2016) Tunneling nanotube formation is stimulated by hypoxia in ovarian cancer cells. Oncotarget. https://doi.org/10.18632/oncotarget.9504

  30. Hashimoto M, Bhuyan F, Hiyoshi M et al (2016) Potential role of the formation of tunneling nanotubes in HIV-1 spread in macrophages. J Immunol 196:1832–1841

    Article  CAS  Google Scholar 

  31. Victoria GS, Arkhipenko A, Zhu S et al (2016) Astrocyte-to-neuron intercellular prion transfer is mediated by cell-cell contact. Sci Rep 6:20762

    Article  CAS  Google Scholar 

  32. Levin Y (2011) The role of statistical power analysis in quantitative proteomics. Proteomics 11:2565–2567. https://doi.org/10.1002/pmic.201100033

    Article  CAS  PubMed  Google Scholar 

  33. Arike L, Peil L (2014) Spectral counting label-free proteomics. Methods Mol Biol 1156:213–222

    Article  CAS  Google Scholar 

  34. McIlwain S, Mathews M, Bereman MS, Rubel EW, MacCoss MJ, Noble WS (2012) Estimating relative abundances of proteins from shotgun proteomics data. BMC Bioinformatics 13:308. https://doi.org/10.1186/1471-2105-13-308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang M, Zhao Y, Zhang B (2015) Efficient test and visualization of multiset intersections. Sci Rep 5:16923

    Article  CAS  Google Scholar 

  36. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  37. Huang DW, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13

    Article  Google Scholar 

  38. Liebermeister W, Noor E, Flamholz A, Davidi D, Bernhardt J, Milo R (2014) Visual account of protein investment in cellular functions. Proc Natl Acad Sci U S A 111:8488–8493

    Article  CAS  Google Scholar 

  39. Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD (2019) PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res 47:D419–D426. https://doi.org/10.1093/nar/gky1038

    Article  CAS  PubMed  Google Scholar 

  40. Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z (2009) GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10:48

    Article  Google Scholar 

  41. Eden E, Lipson D, Yogev S, Yakhini Z (2007) Discovering motifs in ranked lists of DNA sequences. PLoS Comput Biol 3:e39

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a 2014 CSUPERB New Investigator Grant and the National Institute of General Medical Sciences of the National Institutes of Health under Award Number SC2GM111144 awarded to K.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karine Gousset .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gordon, A., Gousset, K. (2021). Utilization of Laser Capture Microdissection Coupled to Mass Spectrometry to Uncover the Proteome of Cellular Protrusions. In: Carrera, M., Mateos, J. (eds) Shotgun Proteomics. Methods in Molecular Biology, vol 2259. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1178-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1178-4_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1177-7

  • Online ISBN: 978-1-0716-1178-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics