Skip to main content

Engineering Biophysical Cues for Controlled 3D Differentiation of Endoderm Derivatives

  • Protocol
  • First Online:
Programmed Morphogenesis

Abstract

Biophysical cues synergize with biochemical cues to drive differentiation of pluripotent stem cells through specific phenotypic trajectory. Tools to manipulate the cell biophysical environment and identify the influence of specific environment perturbation in the presence of combinatorial inputs will be critical to control the development trajectory. Here we describe the procedure to perturb biophysical environment of pluripotent stem cells while maintaining them in 3D culture configuration. We also discuss a high-throughput platform for combinatorial perturbation of the cell microenvironment, and detail a statistical procedure to extract dominant environmental influences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Discher DE, Mooney DJ, Zandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science 324(5935):1673–1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143

    Article  CAS  PubMed  Google Scholar 

  3. Christopherson GT, Song H, Mao HQ (2009) The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation. Biomaterials 30(4):556–564

    Article  CAS  PubMed  Google Scholar 

  4. Guilak F et al (2009) Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5(1):17–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee DA et al (2011) Stem cell mechanobiology. J Cell Biochem 112(1):1–9

    Article  CAS  PubMed  Google Scholar 

  6. Reilly GC, Engler AJ (2010) Intrinsic extracellular matrix properties regulate stem cell differentiation. J Biomech 43(1):55–62

    Article  PubMed  Google Scholar 

  7. Gasiorowski JZ, Murphy CJ, Nealey PF (2013) Biophysical cues and cell behavior: the big impact of little things. Annu Rev Biomed Eng 15:155–176

    Article  CAS  PubMed  Google Scholar 

  8. Engler AJ et al (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689

    Article  CAS  PubMed  Google Scholar 

  9. Candiello J et al (2013) Early differentiation patterning of mouse embryonic stem cells in response to variations in alginate substrate stiffness. J Biol Eng 7(1):9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jaramillo M et al (2015) Inducing endoderm differentiation by modulating mechanical properties of soft substrates. J Tissue Eng Regen Med 9(1):1–12

    Article  CAS  PubMed  Google Scholar 

  11. Task K et al (2014) Systems level approach reveals the correlation of endoderm differentiation of mouse embryonic stem cells with specific microstructural cues of fibrin gels. J R Soc Interface 11(95):20140009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Zhang XN et al (2012) Analysis of regulatory network involved in mechanical induction of embryonic stem cell differentiation. PLoS One 7(4):e35700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Richardson T, Kumta PN, Banerjee I (2014) Alginate encapsulation of human embryonic stem cells to enhance directed differentiation to pancreatic islet-like cells. Tissue Eng Part A 20(23–24):3198–3211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Richardson T et al (2016) Capsule stiffness regulates the efficiency of pancreatic differentiation of human embryonic stem cells. Acta Biomater 35:153–165

    Article  CAS  PubMed  Google Scholar 

  15. Lee LH et al (2009) Micropatterning of human embryonic stem cells dissects the mesoderm and endoderm lineages. Stem Cell Res 2(2):155–162

    Article  CAS  PubMed  Google Scholar 

  16. Flaim CJ, Chien S, Bhatia SN (2005) An extracellular matrix microarray for probing cellular differentiation. Nat Methods 2(2):119–125

    Article  CAS  PubMed  Google Scholar 

  17. Derda R et al (2010) High-throughput discovery of synthetic surfaces that support proliferation of pluripotent cells. J Am Chem Soc 132(4):1289–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ankam S et al (2013) Substrate topography and size determine the fate of human embryonic stem cells to neuronal or glial lineage. Acta Biomater 9(1):4535–4545

    Article  CAS  PubMed  Google Scholar 

  19. Ranga A et al (2014) 3D niche microarrays for systems-level analyses of cell fate. Nat Commun 5:4324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang X et al (2012) Microenvironment of alginate-based microcapsules for cell culture and tissue engineering. J Biosci Bioeng 114(1):1–8

    Article  CAS  PubMed  Google Scholar 

  21. Morch YA et al (2006) Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules 7(5):1471–1480

    Article  CAS  PubMed  Google Scholar 

  22. Chan ES et al (2011) Effect of formulation of alginate beads on their mechanical behavior and stiffness. Particuology 9(3):228–234

    Article  CAS  Google Scholar 

  23. Lee BH, Li B, Guelcher SA (2012) Gel microstructure regulates proliferation and differentiation of MC3T3-E1 cells encapsulated in alginate beads. Acta Biomater 8(5):1693–1702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Banerjee A et al (2009) The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells. Biomaterials 30(27):4695–4699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Musah S et al (2012) Glycosaminoglycan-binding hydrogels enable mechanical control of human pluripotent stem cell self-renewal. ACS Nano 6(11):10168–10177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Richardson TC et al (2018) Development of an alginate array platform to decouple the effect of multiparametric perturbations on human pluripotent stem cells during pancreatic differentiation. Biotechnol J 13(2):1700099

    Article  CAS  Google Scholar 

  27. Mathew S et al (2012) Analysis of alternative signaling pathways of endoderm induction of human embryonic stem cells identifies context specific differences. BMC Syst Biol 6:154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ipsita Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Richardson, T. et al. (2021). Engineering Biophysical Cues for Controlled 3D Differentiation of Endoderm Derivatives. In: Ebrahimkhani, M.R., Hislop, J. (eds) Programmed Morphogenesis. Methods in Molecular Biology, vol 2258. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1174-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1174-6_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1173-9

  • Online ISBN: 978-1-0716-1174-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics