Skip to main content

Methods for Controlled Induction of Singular Rosette Cytoarchitecture Within Human Pluripotent Stem Cell-Derived Neural Multicellular Assemblies

  • Protocol
  • First Online:
Programmed Morphogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2258))

  • 1579 Accesses

Abstract

Neurally differentiating human pluripotent stem cells (hPSCs) possess the ability to self-organize into structures reminiscent of the developing fetal brain. In 2- and 3D cultures, this phenomenon initiates with formation of polarized areas of neural stem cells (NSCs), known as rosettes that resemble cross-sectional slices of the embryonic neural tube, i.e., the central nervous system (CNS) anlage. Thus, neural rosettes serve as an excellent starting point for bioengineering tissue models of all CNS tissues. Here, we provide detailed methods for bioengineering controlled induction of hPSC-derived neural assemblies with a biomimetic, singular neural rosette cytoarchitecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lancaster MA, Renner M, Martin C-A, Wenzel D, Bicknell LS, Hurles ME et al (2013) Cerebral organoids model human brain development and microcephaly. Nature 501:373–379

    Article  CAS  Google Scholar 

  2. Xiang Y, Tanaka Y, Cakir B, Patterson B, Kim K-Y, Sun P et al (2019) hESC-derived thalamic organoids form reciprocal projections when fused with cortical organoids. Cell Stem Cell 24:487–497.e7

    Article  CAS  Google Scholar 

  3. Camp JG, Badsha F, Florio M, Kanton S, Gerber T, Wilsch-Bräuninger M et al (2015) Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc Natl Acad Sci U S A 112:15672–15677

    Article  CAS  Google Scholar 

  4. Renner M, Lancaster MA, Bian S, Choi H, Ku T, Peer A et al (2017) Self-organized developmental patterning and differentiation in cerebral organoids. EMBO J 36:1316–1329

    Article  CAS  Google Scholar 

  5. Jo J, Xiao Y, Sun AX, Cukuroglu E, Tran H-D, Göke J et al (2016) Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons. Cell Stem Cell 19:248–257

    Article  CAS  Google Scholar 

  6. Duval N, Vaslin C, Barata T, Frarma Y, Contremoulins V, Baudin X et al (2019) BMP4 patterns Smad activity and generates stereotyped cell fate organisation in spinal organoids. Development 146:dev175430

    Article  CAS  Google Scholar 

  7. Lemke KA, Aghayee A, Ashton RS (2017) Deriving, regenerating, and engineering CNS tissues using human pluripotent stem cells. Curr Opin Biotechnol 47:36–42

    Article  CAS  Google Scholar 

  8. Qian X, Nguyen HN, Song MM, Hadiono C, Ogden SC, Hammack C et al (2016) Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165:1238–1254

    Article  CAS  Google Scholar 

  9. Pollen AA, Bhaduri A, Andrews MG, Nowakowski TJ, Meyerson OS, Mostajo-Radji MA et al (2019) Establishing cerebral organoids as models of human-specific brain evolution. Cell 176:743–756.e17

    Article  CAS  Google Scholar 

  10. Trujillo CA, Gao R, Negraes PD, Chaim IA, Domissy A, Vandenberghe M et al (2019) Nested oscillatory dynamics in cortical organoids model early human brain network development. Cell Stem Cell 25:558–569

    Article  CAS  Google Scholar 

  11. Wells MF, Salick MR, Wiskow O, Ho DJ, Worringer KA, Ihry RJ et al (2016) Genetic ablation of AXL does not protect human neural progenitor cells and cerebral organoids from zika virus infection. Cell Stem Cell 19:703–708

    Article  CAS  Google Scholar 

  12. Bagley JA, Reumann D, Bian S, Lévi-Strauss J, Knoblich JA (2017) Fused cerebral organoids model interactions between brain regions. Nat Methods 14:743–751

    Article  CAS  Google Scholar 

  13. Knight GT, Lundin BF, Iyer N, Ashton LM, Sethares WA, Willett RM et al (2018) Engineering induction of singular neural rosette emergence within hPSC-derived tissues. elife 7:e37549

    Article  Google Scholar 

  14. Marti-Figueroa CR, Ashton RS (2017) The case for applying tissue engineering methodologies to instruct human organoid morphogenesis. Acta Biomater 54:35–44

    Article  CAS  Google Scholar 

  15. Velasco S, Kedaigle AJ, Simmons SK, Nash A, Rocha M, Quadrato G et al (2019) Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature 570:523–527

    Article  CAS  Google Scholar 

  16. Yoon S-J, Elahi LS, Paşca AM, Marton RM, Gordon A, Revah O et al (2019) Reliability of human cortical organoid generation. Nat Methods 16:75–78

    Article  CAS  Google Scholar 

  17. Lippmann ES, Estevez-Silva MC, Ashton RS (2014) Defined human pluripotent stem cell culture enables highly efficient neuroepithelium derivation without small molecule inhibitors. Stem Cells 32:1032–1042

    Article  CAS  Google Scholar 

  18. Lippmann ES, Williams CE, Ruhl DA, Estevez-Silva MC, Chapman ER, Coon JJ et al (2015) Deterministic HOX patterning in human pluripotent stem cell-derived neuroectoderm. Stem Cell Rep 4:632–644

    Article  CAS  Google Scholar 

  19. McNulty JD, Marti-Figueroa C, Seipel F, Plantz JZ, Ellingham T, Duddleston LJL et al (2019) Micro-injection molded, poly(vinyl alcohol)-calcium salt templates for precise customization of 3D hydrogel internal architecture. Acta Biomater 95:258–268

    Article  CAS  Google Scholar 

  20. Knight GT, Sha J, Ashton RS (2015) Micropatterned, clickable culture substrates enable in situ spatiotemporal control of human PSC-derived neural tissue morphology. Chem Commun (Camb) 51:5238–5241

    Article  CAS  Google Scholar 

  21. Manfrin A, Tabata Y, Paquet ER, Vuaridel AR, Rivest FR, Naef F et al (2019) Engineered signaling centers for the spatially controlled patterning of human pluripotent stem cells. Nat Methods 16(7):640–648

    Article  CAS  Google Scholar 

  22. Uzel SGM, Amadi OC, Pearl TM, Lee RT, So PTC, Kamm RD (2016) Simultaneous or sequential orthogonal gradient formation in a 3D cell culture microfluidic platform. Small 12:612–622

    Article  CAS  Google Scholar 

  23. Cederquist GY, Asciolla JJ, Tchieu J, Walsh RM, Cornacchia D, Resh MD et al (2019) Specification of positional identity in forebrain organoids. Nat Biotechnol 37:436–444

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randolph Ashton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Aghayee, A., Ashton, R. (2021). Methods for Controlled Induction of Singular Rosette Cytoarchitecture Within Human Pluripotent Stem Cell-Derived Neural Multicellular Assemblies. In: Ebrahimkhani, M.R., Hislop, J. (eds) Programmed Morphogenesis. Methods in Molecular Biology, vol 2258. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1174-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1174-6_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1173-9

  • Online ISBN: 978-1-0716-1174-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics