Skip to main content

Network Re-Wiring During Allostery and Protein-Protein Interactions: A Graph Spectral Approach

  • Protocol
  • First Online:
Allostery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2253))

Abstract

The process of allostery is often guided by subtle changes in the non-covalent interactions between residues of a protein. These changes may be brought about by minor perturbations by natural processes like binding of a ligand or protein-protein interaction. The challenge lies in capturing minute changes at the residue interaction level and following their propagation at local as well as global distances. While macromolecular effects of the phenomenon of allostery are inferred from experiments, a computational microscope can elucidate atomistic-level details leading to such macromolecular effects. Network formalism has served as an attractive means to follow this path and has been pursued further for the past couple of decades. In this chapter some concepts and methods are summarized, and recent advances are discussed. Specifically, the changes in strength of interactions (edge weight) and their repercussion on the overall protein organization (residue clustering) are highlighted. In this review, we adopt a graph spectral method to probe these subtle changes in a quantitative manner. Further, the power of this method is demonstrated for capturing re-ordering of side-chain interactions in response to ligand binding, which culminates into formation of a protein-protein complex in β2-adrenergic receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jones S, Thornton JM (1996) Principles of protein-protein interactions. Proc Natl Acad Sci U S A 93(1):13–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Szklarczyk D et al (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43(Database issue):D447–D452

    Article  CAS  PubMed  Google Scholar 

  3. Suel GM et al (2003) Evolutionarily conserved networks of residues mediate allosteric communication in proteins. Nat Struct Biol 10(1):59–69

    Article  PubMed  CAS  Google Scholar 

  4. Tsai CJ, Ma B, Nussinov R (2009) Protein-protein interaction networks: how can a hub protein bind so many different partners? Trends Biochem Sci 34(12):594–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kuriyan J, Eisenberg D (2007) The origin of protein interactions and allostery in colocalization. Nature 450(7172):983–990

    Article  CAS  PubMed  Google Scholar 

  6. Motlagh HN et al (2014) The ensemble nature of allostery. Nature 508(7496):331–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bagler G, Sinha S (2007) Assortative mixing in Protein Contact Networks and protein folding kinetics. Bioinformatics 23(14):1760–1767

    Article  CAS  PubMed  Google Scholar 

  8. Piovesan D, Minervini G, Tosatto SC (2016) The RING 2.0 web server for high quality residue interaction networks. Nucleic Acids Res 44(W1):W367–W374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Di Paola L et al (2013) Protein contact networks: an emerging paradigm in chemistry. Chem Rev 113(3):1598–1613

    Article  PubMed  CAS  Google Scholar 

  10. Bhattacharyya M, Ghosh S, Vishveshwara S (2016) Protein structure and function: looking through the network of side-chain Interactions. Curr Protein Pept Sci 17(1):4–25

    Article  CAS  PubMed  Google Scholar 

  11. Vishveshwara S, Ghosh A, Hansia P (2009) Intra and inter-molecular communications through protein structure network. Curr Protein Pept Sci 10(2):146–160

    Article  CAS  PubMed  Google Scholar 

  12. Vishveshwara S, Brinda KV, Kannan N (2002) Protein structure: insights from graph theory. J Theor Comput Chem 01(01):187–211

    Article  CAS  Google Scholar 

  13. Gadiyaram V, Ghosh S, Vishveshwara S (2017) A graph spectral-based scoring scheme for network comparison. J Complex Networks 5(2):219–244

    Google Scholar 

  14. Ghosh S, Gadiyaram V, Vishveshwara S (2017) Validation of protein structure models using network similarity score. Proteins 85(9):1759–1776

    Article  CAS  PubMed  Google Scholar 

  15. Gadiyaram V, Dighe A, Vishveshwara S (2019) Identification of crucial elements for network integrity: a perturbation approach through graph spectral method. Int J Adv Eng Sci Appl Math 11:91–104

    Google Scholar 

  16. Vijayabaskar MS, Vidya N, Saraswathi V (2011) GraProStr—graphs of protein structures: a tool for constructing graphs and generating graph parameters for protein structures

    Google Scholar 

  17. Adamcsek B et al (2006) CFinder: locating cliques and overlapping modules in biological networks. Bioinformatics 22(8):1021–1023

    Article  CAS  PubMed  Google Scholar 

  18. Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1(1):269–271

    Article  Google Scholar 

  19. Bhattacharyya M, Bhat CR, Vishveshwara S (2013) An automated approach to network features of protein structure ensembles. Protein Sci 22(10):1399–1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Patra SM, Vishveshwara S (2000) Backbone cluster identification in proteins by a graph theoretical method. Biophys Chem 84(1):13–25

    Article  CAS  PubMed  Google Scholar 

  21. Vendruscolo M et al (2002) Small-world view of the amino acids that play a key role in protein folding. Phys Rev E Stat Nonlinear Soft Matter Phys 65(6 Pt 1):061910

    Article  CAS  Google Scholar 

  22. Brinda KV, Kannan N, Vishveshwara S (2002) Analysis of homodimeric protein interfaces by graph-spectral methods. Protein Eng 15(4):265–277

    Article  CAS  PubMed  Google Scholar 

  23. Miyazawa S, Jernigan RL (1985) Estimation of effective interresidue contact energies from protein crystal structures: quasi-chemical approximation. Macromolecules 18(3):534–552

    Article  CAS  Google Scholar 

  24. Miyazawa S, Jernigan RL (1996) Residue-residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. J Mol Biol 256(3):623–644

    Article  CAS  PubMed  Google Scholar 

  25. Kannan N, Vishveshwara S (1999) Identification of side-chain clusters in protein structures by a graph spectral method. J Mol Biol 292(2):441–464

    Article  CAS  PubMed  Google Scholar 

  26. Bhattacharya S, Vaidehi N (2014) Differences in allosteric communication pipelines in the inactive and active states of a GPCR. Biophys J 107(2):422–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ghosh A, Vishveshwara S (2008) Variations in clique and community patterns in protein structures during allosteric communication: investigation of dynamically equilibrated structures of methionyl tRNA synthetase complexes. Biochemistry 47(44):11398–11407

    Article  CAS  PubMed  Google Scholar 

  28. Bhattacharyya M et al (2010) Allostery and conformational free energy changes in human tryptophanyl-tRNA synthetase from essential dynamics and structure networks. Proteins 78(3):506–517

    Article  CAS  PubMed  Google Scholar 

  29. Sistla RK, Brinda KV, Vishveshwara S (2005) Identification of domains and domain interface residues in multidomain proteins from graph spectral method. Proteins 59(3):616–626

    Article  CAS  PubMed  Google Scholar 

  30. Kannan N et al (2001) Stabilizing interactions in the dimer interface of alpha-subunit in Escherichia coli RNA polymerase: a graph spectral and point mutation study. Protein Sci 10(1):46–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brinda KV, Surolia A, Vishveshwara S (2005) Insights into the quaternary association of proteins through structure graphs: a case study of lectins. Biochem J 391(Pt 1):1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Reichmann D et al (2005) The modular architecture of protein-protein binding interfaces. Proc Natl Acad Sci U S A 102(1):57–62

    Article  CAS  PubMed  Google Scholar 

  33. Trzaskowski B et al (2012) Action of molecular switches in GPCRs—theoretical and experimental studies. Curr Med Chem 19(8):1090–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wettschureck N, Offermanns S (2005) Mammalian G proteins and their cell type specific functions. Physiol Rev 85(4):1159–1204

    Article  CAS  PubMed  Google Scholar 

  35. Hazell GG et al (2012) G protein-coupled receptors in the hypothalamic paraventricular and supraoptic nuclei—serpentine gateways to neuroendocrine homeostasis. Front Neuroendocrinol 33(1):45–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sharma N, Akhade AS, Qadri A (2013) Sphingosine-1-phosphate suppresses TLR-induced CXCL8 secretion from human T cells. J Leukoc Biol 93(4):521–528

    Article  CAS  PubMed  Google Scholar 

  37. Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5(12):993–996

    Article  CAS  PubMed  Google Scholar 

  38. Rasmussen SG et al (2011) Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature 477(7366):549–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wacker D et al (2010) Conserved binding mode of human beta2 adrenergic receptor inverse agonists and antagonist revealed by X-ray crystallography. J Am Chem Soc 132(33):11443–11445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dixon RA et al (1986) Cloning of the gene and cDNA for mammalian beta-adrenergic receptor and homology with rhodopsin. Nature 321(6065):75–79

    Article  CAS  PubMed  Google Scholar 

  41. Rasmussen SG et al (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450(7168):383–387

    Article  CAS  PubMed  Google Scholar 

  42. Ballesteros JA, Weinstein H (1995) Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. In: Stuart CS (ed) Methods in neurosciences. Academic, New York, pp 366–428

    Google Scholar 

  43. Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8(2):127–134

    Article  CAS  PubMed  Google Scholar 

  44. Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48(3):443–453

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

S.V. thanks National Academy of Sciences (NASI), Allahabad, India, for Senior Scientist Fellowship. V.G. thanks IISc for incentive research support grant and CSIR for Research Associate fellowship. We thank SERC and MBU of the Indian Institute of Science for computational facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saraswathi Vishveshwara .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Data 1

Residue clustering in β2AR-Gs (XLSX 33 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gadiyaram, V., Dighe, A., Ghosh, S., Vishveshwara, S. (2021). Network Re-Wiring During Allostery and Protein-Protein Interactions: A Graph Spectral Approach. In: Di Paola, L., Giuliani, A. (eds) Allostery. Methods in Molecular Biology, vol 2253. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1154-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1154-8_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1153-1

  • Online ISBN: 978-1-0716-1154-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics