Skip to main content

Codon Resolution Analysis of Ribosome Profiling Data

  • Protocol
  • First Online:
Ribosome Profiling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2252))

Abstract

Translation is a central biological process in living cells. Ribosome profiling approach enables assessing translation on a global, cell-wide level. Extracting versatile information from the ribosome profiling data usually requires specialized expertise for handling the sequencing data that is not available to the broad community of experimentalists. Here, we provide an easy-to-use and modifiable workflow that uses a small set of commands and enables full data analysis in a standardized way, including precise positioning of the ribosome-protected fragments, for determining codon-specific translation features. The workflow is complemented with simple step-by-step explanations and is accessible to scientists with no computational background.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buttgereit F, Brand MD (1995) A hierarchy of ATP-consuming processes in mammalian cells. Biochem J 312(Pt 1):163–167. https://doi.org/10.1042/bj3120163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Russell JB, Cook GM (1995) Energetics of bacterial growth: balance of anabolic and catabolic reactions. Microbiol Rev 59(1):48–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ingolia NT (2014) Ribosome profiling: new views of translation, from single codons to genome scale. Nat Rev Genet 15(3):205–213. https://doi.org/10.1038/nrg3645

    Article  CAS  PubMed  Google Scholar 

  4. Liu Y, Beyer A, Aebersold R (2016) On the dependency of cellular protein levels on mRNA Abundance. Cell 165(3):535–550. https://doi.org/10.1016/j.cell.2016.03.014

    Article  CAS  PubMed  Google Scholar 

  5. Sonenberg N, Hinnebusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136(4):731–745. https://doi.org/10.1016/j.cell.2009.01.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang G, Ignatova Z (2011) Folding at the birth of the nascent chain: coordinating translation with co-translational folding. Curr Opin Struct Biol 21(1):25–31. https://doi.org/10.1016/j.sbi.2010.10.008

    Article  CAS  PubMed  Google Scholar 

  7. Collart MA, Weiss B (2019) Ribosome pausing, a dangerous necessity for co-translational events. Nucleic Acids Res. https://doi.org/10.1093/nar/gkz763

  8. Hanson G, Coller J (2018) Codon optimality, bias and usage in translation and mRNA decay. Nat Rev Mol Cell Biol 19(1):20–30. https://doi.org/10.1038/nrm.2017.91

    Article  CAS  PubMed  Google Scholar 

  9. Kirchner S, Ignatova Z (2015) Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. Nat Rev Genet 16(2):98–112. https://doi.org/10.1038/nrg3861

    Article  CAS  PubMed  Google Scholar 

  10. Kramer G, Boehringer D, Ban N, Bukau B (2009) The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nat Struct Mol Biol 16(6):589–597. https://doi.org/10.1038/nsmb.1614

    Article  CAS  PubMed  Google Scholar 

  11. Kramer G, Shiber A, Bukau B (2019) Mechanisms of cotranslational maturation of newly synthesized proteins. Annu Rev Biochem 88:337–364. https://doi.org/10.1146/annurev-biochem-013118-111717

    Article  CAS  PubMed  Google Scholar 

  12. Schwarz A, Beck M (2019) The benefits of cotranslational assembly: a structural perspective. Trends Cell Biol 29(10):791–803. https://doi.org/10.1016/j.tcb.2019.07.006

    Article  CAS  PubMed  Google Scholar 

  13. Stein KC, Frydman J (2019) The stop-and-go traffic regulating protein biogenesis: How translation kinetics controls proteostasis. J Biol Chem 294(6):2076–2084. https://doi.org/10.1074/jbc.REV118.002814

    Article  CAS  PubMed  Google Scholar 

  14. Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324(5924):218–223. https://doi.org/10.1126/science.1168978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Steitz JA (1969) Polypeptide chain initiation: nucleotide sequences of the three ribosomal binding sites in bacteriophage R17 RNA. Nature 224(5223):957–964. https://doi.org/10.1038/224957a0

    Article  CAS  PubMed  Google Scholar 

  16. Ingolia NT (2016) Ribosome footprint profiling of translation throughout the genome. Cell 165(1):22–33. https://doi.org/10.1016/j.cell.2016.02.066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Anders M, Chelysheva I, Goebel I, Trenkner T, Zhou J, Mao Y, Verzini S, Qian SB, Ignatova Z (2018) Dynamic m(6)A methylation facilitates mRNA triaging to stress granules. Life Sci Alliance 1(4):e201800113. https://doi.org/10.26508/lsa.201800113

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bartholomaus A, Fedyunin I, Feist P, Sin C, Zhang G, Valleriani A, Ignatova Z (2016) Bacteria differently regulate mRNA abundance to specifically respond to various stresses. Philos Trans Series A, Math Phys Eng Sci 374(2063). https://doi.org/10.1098/rsta.2015.0069

  19. Ikeuchi K, Izawa T, Inada T (2018) Recent progress on the molecular mechanism of quality controls induced by ribosome stalling. Front Genet 9:743. https://doi.org/10.3389/fgene.2018.00743

    Article  CAS  PubMed  Google Scholar 

  20. Mohammad F, Woolstenhulme CJ, Green R, Buskirk AR (2016) Clarifying the translational pausing landscape in bacteria by ribosome profiling. Cell Rep 14(4):686–694. https://doi.org/10.1016/j.celrep.2015.12.073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Avcilar-Kucukgoze I, Bartholomaus A, Cordero Varela JA, Kaml RF, Neubauer P, Budisa N, Ignatova Z (2016) Discharging tRNAs: a tug of war between translation and detoxification in Escherichia coli. Nucleic Acids Res 44(17):8324–8334. https://doi.org/10.1093/nar/gkw697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kirchner S, Cai Z, Rauscher R, Kastelic N, Anding M, Czech A, Kleizen B, Ostedgaard LS, Braakman I, Sheppard DN, Ignatova Z (2017) Alteration of protein function by a silent polymorphism linked to tRNA abundance. PLoS Biol 15(5):e2000779. https://doi.org/10.1371/journal.pbio.2000779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dunn JG, Foo CK, Belletier NG, Gavis ER, Weissman JS (2013) Ribosome profiling reveals pervasive and regulated stop codon readthrough in Drosophila melanogaster. eLife 2:e01179. https://doi.org/10.7554/eLife.01179

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wang H, Yang L, Wang Y, Chen L, Li H, Xie Z (2019) RPFdb v2.0: an updated database for genome-wide information of translated mRNA generated from ribosome profiling. Nucleic Acids Res 47(D1):D230–D234. https://doi.org/10.1093/nar/gky978

    Article  CAS  PubMed  Google Scholar 

  25. Calviello L, Mukherjee N, Wyler E, Zauber H, Hirsekorn A, Selbach M, Landthaler M, Obermayer B, Ohler U (2016) Detecting actively translated open reading frames in ribosome profiling data. Nat Methods 13(2):165–170. https://doi.org/10.1038/nmeth.3688

    Article  CAS  PubMed  Google Scholar 

  26. Fields AP, Rodriguez EH, Jovanovic M, Stern-Ginossar N, Haas BJ, Mertins P, Raychowdhury R, Hacohen N, Carr SA, Ingolia NT, Regev A, Weissman JS (2015) A regression-based analysis of ribosome-profiling data reveals a conserved complexity to mammalian translation. Mol Cell 60(5):816–827. https://doi.org/10.1016/j.molcel.2015.11.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Olshen AB, Hsieh AC, Stumpf CR, Olshen RA, Ruggero D, Taylor BS (2013) Assessing gene-level translational control from ribosome profiling. Bioinformatics 29(23):2995–3002. https://doi.org/10.1093/bioinformatics/btt533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dunn JG, Weissman JS (2016) Plastid: nucleotide-resolution analysis of next-generation sequencing and genomics data. BMC Genomics 17(1):958. https://doi.org/10.1186/s12864-016-3278-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lauria F, Tebaldi T, Bernabo P, Groen EJN, Gillingwater TH, Viero G (2018) riboWaltz: optimization of ribosome P-site positioning in ribosome profiling data. PLoS Comput Biol 14(8):e1006169. https://doi.org/10.1371/journal.pcbi.1006169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Popa A, Lebrigand K, Paquet A, Nottet N, Robbe-Sermesant K, Waldmann R, Barbry P (2016) RiboProfiling: a bioconductor package for standard Ribo-seq pipeline processing. F1000Res 5:1309. https://doi.org/10.12688/f1000research.8964.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Michel AM, Mullan JP, Velayudhan V, O'Connor PB, Donohue CA, Baranov PV (2016) RiboGalaxy: a browser based platform for the alignment, analysis and visualization of ribosome profiling data. RNA Biol 13(3):316–319. https://doi.org/10.1080/15476286.2016.1141862

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gerashchenko MV, Gladyshev VN (2017) Ribonuclease selection for ribosome profiling. Nucleic Acids Res 45(2):e6. https://doi.org/10.1093/nar/gkw822

    Article  CAS  PubMed  Google Scholar 

  33. O'Connor PB, Andreev DE, Baranov PV (2016) Comparative survey of the relative impact of mRNA features on local ribosome profiling read density. Nat Commun 7:12915. https://doi.org/10.1038/ncomms12915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26(6):841–842. https://doi.org/10.1093/bioinformatics/btq033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal 17(1). https://doi.org/10.14806/ej.17.1.200

  37. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25. https://doi.org/10.1186/gb-2009-10-3-r25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mohammad F, Green R, Buskirk AR (2019) A systematically-revised ribosome profiling method for bacteria reveals pauses at single-codon resolution. Elife 8. https://doi.org/10.7554/eLife.42591

  39. Bartholomaus A, Del Campo C, Ignatova Z (2016) Mapping the non-standardized biases of ribosome profiling. Biol Chem 397(1):23–35. https://doi.org/10.1515/hsz-2015-0197

    Article  CAS  PubMed  Google Scholar 

  40. Wu CC, Zinshteyn B, Wehner KA, Green R (2019) High-resolution ribosome profiling defines discrete ribosome elongation states and translational regulation during cellular stress. Mol Cell 73(5):959–970. e955. https://doi.org/10.1016/j.molcel.2018.12.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Guydosh NR, Green R (2017) Translation of poly(A) tails leads to precise mRNA cleavage. RNA 23(5):749–761. https://doi.org/10.1261/rna.060418.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Woolstenhulme CJ, Guydosh NR, Green R, Buskirk AR (2015) High-precision analysis of translational pausing by ribosome profiling in bacteria lacking EFP. Cell Rep 11(1):13–21. https://doi.org/10.1016/j.celrep.2015.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Del Campo C, Bartholomaus A, Fedyunin I, Ignatova Z (2015) Secondary structure across the bacterial transcriptome reveals versatile roles in mRNA regulation and function. PLoS Genet 11(10):e1005613. https://doi.org/10.1371/journal.pgen.1005613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work was supported by European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 764591 (SynCrop) and by Deutsche Forschungsgemeinschaft SPP2002 (IG 73/16-1) grants to Z.I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoya Ignatova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bartholomäus, A., Ignatova, Z. (2021). Codon Resolution Analysis of Ribosome Profiling Data. In: Labunskyy, V.M. (eds) Ribosome Profiling. Methods in Molecular Biology, vol 2252. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1150-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1150-0_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1149-4

  • Online ISBN: 978-1-0716-1150-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics