Skip to main content

Fast-Scan Voltammetry for In Vivo Measurements of Neurochemical Dynamics

  • Protocol
  • First Online:
The Brain Reward System

Part of the book series: Neuromethods ((NM,volume 165))

Abstract

Background-subtracted fast-scan cyclic voltammetry (FSCV) is an electrochemical method that enables the monitoring of neurochemical dynamics in brain tissue with sub-second resolution. FSCV provides information regarding the magnitude and the time course of neurochemical release and reuptake, with additional qualitative information that can permit analyte identification. When performed in awake animals, this voltammetric approach can provide remarkable information regarding the molecular mechanisms that underlie goal-directed behavior and associative learning. In addition, FSCV can be used to quantify the impact of pharmacological agents on neurotransmitter kinetics. This chapter contains an explicit description of how to make these measurements in animals (rats) as well as critical considerations when interpreting FSCV data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Michael AC, Borland LM (eds) (2006) Electrochemical methods for neuroscience. CRC Press, Boca Raton, FL

    Google Scholar 

  2. Bucher ES, Wightman RM (2015) Electrochemical analysis of neurotransmitters. Annu Rev Anal Chem 8:239–261

    Article  CAS  Google Scholar 

  3. Peters JL, Miner LH, Michael AC, Sesack SR (2004) Ultrastructure at carbon fiber microelectrode implantation sites after acute voltammetric measurements in the striatum of anesthetized rats. J Neurosci Methods 137:9–23

    Article  PubMed  Google Scholar 

  4. Day JJ, Roitman MF, Wightman RM, Carelli RM (2007) Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens. Nat Neurosci 10:1020–1028

    Article  CAS  PubMed  Google Scholar 

  5. Stuber GD, Klanker M, de Ridder B et al (2008) Reward-predictive cues enhance excitatory synaptic strength onto midbrain dopamine neurons. Science 321:1690–1692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gan JO, Walton ME, Phillips PEM (2010) Dissociable cost and benefit encoding of future rewards by mesolimbic dopamine. Nat Neurosci 13:25–27

    Article  CAS  PubMed  Google Scholar 

  7. Howe MW, Tierney PL, Sandberg SG, Phillips PEM, Graybiel AM (2013) Prolonged dopamine signalling in striatum signals proximity and value of distant rewards. Nature 500:575–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Flagel SB, Clark JJ, Robinson TE, Mayo L, Czuj A, Willuhn I, Akers CA, Clinton SM, Phillips PEM, Akil H (2011) A selective role for dopamine in stimulus–reward learning. Nature 469:53–57

    Article  CAS  PubMed  Google Scholar 

  9. Owesson-White CA, Cheer JF, Beyene M, Carelli RM, Wightman RM (2008) Dynamic changes in accumbens dopamine correlate with learning during intracranial self-stimulation. Proc Natl Acad Sci U S A 105:11957–11962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Syed EC, Grima LL, Magill PJ, Bogacz R, Brown P, Walton ME (2016) Action initiation shapes mesolimbic dopamine encoding of future rewards. Nat Neurosci 19:34–36

    Article  CAS  PubMed  Google Scholar 

  11. Wood KM, Zeqja A, Nijhout HF, Reed MC, Best J, Hashemi P (2014) Voltammetric and mathematical evidence for dual transport mediation of serotonin clearance in vivo. J Neurochem 130:351–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Saylor RA, Hersey M, West A, Buchanan AM, Berger SN, Nijhout HFm Reed MC, Best J, Hashemi P (2019) In vivo serotonin dynamics in male and female mice: determining effects of acute escitalopram using fast scan cyclic voltammetry. Front Neurosci 13:362

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dankoski EC, Carroll S, Wightman RM (2016) Acute selective serotonin reuptake inhibitors regulate the dorsal raphe nucleus causing amplification of terminal serotonin release. J Neurochem 136:1131–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dankoski EC, Agster KL, Fox ME, Moy SS, Wightman RM (2014) Facilitation of serotonin signaling by SSRIs is attenuated by social isolation. Neuropsychopharmacology 39:2928–2937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kirkpatrick DC, McKinney CJ, Manis PB, Wightman RM (2016) Expanding neurochemical investigations with multi-modal recording: simultaneous fast-scan cyclic voltammetry, iontophoresis, and patch clamp measurements. Analyst 141:4902–4911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Belle AM, Owesson-White C, Herr NR, Carelli RM, Wightman RM (2013) Controlled iontophoresis coupled with fast-scan cyclic voltammetry/electrophysiology in awake, freely moving animals. ACS Chem Neurosci 4:761–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gómez-A A, Shnitko TA, Barefoot HM, Brightbill EL, Sombers LA, Nicola SM, Robinson DL (2019) Local μ-opioid receptor antagonism blunts evoked phasic dopamine release in the nucleus accumbens of rats. ACS Chem Neurosci 10:1935–1940

    Article  CAS  PubMed  Google Scholar 

  18. Duwensee H, Vázquez-Alvarez T, Flechsig GU, Wang J (2009) Thermally induced electrode protection against biofouling. Talanta 77:1757–1760

    Article  CAS  PubMed  Google Scholar 

  19. Kuhlmann J, Dzugan LC, Heineman WR (2012) Comparison of the effects of biofouling on voltammetric and potentiometric measurements. Electroanalysis 24:1732–1738

    CAS  Google Scholar 

  20. Patel J, Radhakrishnan L, Zhao B, Uppalapati B, Daniels RC, Ward KR, Collinson MM (2013) Electrochemical properties of nanostructured porous gold electrodes in biofouling solutions. Anal Chem 85:11610–11618

    Article  CAS  PubMed  Google Scholar 

  21. Harreither W, Trouillon R, Poulin P, Neri W, Ewing AG, Safina G (2013) Carbon nanotube fiber microelectrodes show a higher resistance to dopamine fouling. Anal Chem 85:7447–7453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Takmakov P, Zachek MK, Keithley RB, Walsh PL, Donley C, McCarty GS, Wightman RM (2010) Carbon microelectrodes with a renewable surface. Anal Chem 82:2020–2028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Clark JJ, Sandberg SG, Wanat MJ, Gan JO, Horne EA, Hart AS, Akers CA, Parker JG, Willuhn I, Martinez V, Evans SB, Stella N, Phillips PEM (2010) Chronic microsensors for longitudinal, subsecond dopamine detection in behaving animals. Nat Methods 7:126–129

    Article  CAS  PubMed  Google Scholar 

  24. Park J, Aragona BJ, Kile BM, Carelli RM, Wightman RM (2010) In vivo voltammetric monitoring of catecholamine release in subterritories of the nucleus accumbens shell. Neuroscience 169:132–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Arbuthnott GW, Wickens J (2007) Space, time and dopamine. Trends Neurosci 30:62–69

    Article  CAS  PubMed  Google Scholar 

  26. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. John Wiley, New York

    Google Scholar 

  27. Schmidt AC, Wang X, Zhu Y, Sombers LA (2013) Carbon nanotube yarn electrodes for enhanced detection of neurotransmitter dynamics in live brain tissue. ACS Nano 7:7864–7873

    Article  CAS  PubMed  Google Scholar 

  28. Jacobs CB, Vickrey TL, Venton BJ (2011) Functional groups modulate the sensitivity and electron transfer kinetics of neurochemicals at carbon nanotube modified microelectrodes. Analyst 136:3557–3565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Puthongkham P, Yang C, Venton BJ (2018) Carbon nanohorn-modified carbon fiber microelectrodes for dopamine detection. Electroanalysis 30:1073–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Unwin PR, Güell AG, Zhang G (2016) Nanoscale electrochemistry of sp2 carbon materials: from graphite and graphene to carbon nanotubes. Acc Chem Res 49:2041–2048

    Article  CAS  PubMed  Google Scholar 

  31. Cryan MT, Ross AE (2019) Scalene waveform for codetection of guanosine and adenosine using fast-scan cyclic voltammetry. Anal Chem 91:5987–5993

    Article  CAS  PubMed  Google Scholar 

  32. Calhoun SE, Meunier CJ, Lee CA, McCarty GS, Sombers LA (2018) Characterization of a multiple-scan-rate voltammetric waveform for real-time detection of met-enkephalin. ACS Chem Neurosci 10:2022–2032

    Article  CAS  PubMed Central  Google Scholar 

  33. Ross AE, Venton BJ (2014) Sawhorse waveform voltammetry for selective detection of adenosine, ATP, and hydrogen peroxide. Anal Chem 86:7486–7493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jackson BP, Dietz SM, Wightman RM (1995) Fast-scan cyclic voltammetry of 5-hydroxytryptamine. Anal Chem 67:1115–1120

    Article  CAS  PubMed  Google Scholar 

  35. Keithley RB, Carelli RM, Wightman RM (2010) Rank estimation and the multivariate analysis of in vivo fast-scan cyclic voltammetric data. Anal Chem 82:5541–5551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Johnson JA, Hobbs CN, Wightman RM (2017) Removal of differential capacitive interferences in fast-scan cyclic voltammetry. Anal Chem 89:6166–6174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Meunier CJ, McCarty GS, Sombers LA (2019) Drift subtraction for fast-scan cyclic voltammetry using double-waveform partial-least-squares regression. Anal Chem 91:7319–7327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Johnson JA, Gray JH, Rodeberg NT, Wightman RM (2017) Multivariate curve resolution for signal isolation from fast-scan cyclic voltammetric data. Anal Chem 89:10547–10555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Root DH, Hoffman AF, Good CH, Zhang S, Gigante E, Lupica CR, Morales M (2015) Norepinephrine activates dopamine D4 receptors in the rat lateral Habenula. J Neurosci 35:3460–3469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wolf K, Zarkua G, Chan SA, Sridhar A, Smith C (2016) Spatial and activity-dependent catecholamine release in rat adrenal medulla under native neuronal stimulation. Physiol Rep 4:e12898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Park JW, Bhimani RV, Park JW (2017) Noradrenergic modulation of dopamine transmission evoked by electrical stimulation of the locus coeruleus in the rat brain. ACS Chem Neurosci 8:1913–1924

    Article  CAS  PubMed  Google Scholar 

  42. Hensley AL, Colley AR, Ross AE (2018) Real-time detection of melatonin using fast-scan cyclic voltammetry. Anal Chem 90:8642–8650

    Article  CAS  PubMed  Google Scholar 

  43. Hashemi P, Dankoski EC, Petrovic J, Keithley RB, Wightman RM (2009) Voltammetric detection of 5-hydroxytryptamine release in the rat brain. Anal Chem 81:9462–9471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sanford AL, Morton SW, Whitehouse KL, Oara HM, Lugo-Morales LZ, Roberts JG, Sombers LA (2010) Voltammetric detection of hydrogen peroxide at carbon fiber microelectrodes. Anal Chem 82:5205–5210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Spanos M, Gras-Najjar J, Letchworth JM, Sanford AL, Toups JV, Sombers LA (2013) Quantitation of hydrogen peroxide fluctuations and their modulation of dopamine dynamics in the rat dorsal striatum using fast-scan cyclic voltammetry. ACS Chem Neurosci 4:782–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dengler AK, Wightman RM, McCarty GS (2015) Microfabricated collector-generator electrode sensor for measuring absolute pH and oxygen concentrations. Anal Chem 87:10556–10564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zachek MK, Takmakov P, Moody B, Wightman RM, McCarty GS (2009) Simultaneous decoupled detection of dopamine and oxygen using Pyrolyzed carbon microarrays and fast-scan cyclic voltammetry. Anal Chem 81:6258–6265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ross AE, Venton BJ (2015) Adenosine transiently modulates stimulated dopamine release in the caudate–putamen via A1 receptors. J Neurochem 132:51–60

    Article  CAS  PubMed  Google Scholar 

  49. Pihel K, Schroeder TJ, Wightman RM (1994) Rapid and selective cyclic voltammetric measurements of epinephrine and norepinephrine as a method to measure secretion from single bovine adrenal medullary cells. Anal Chem 66:4532–4537

    Article  CAS  Google Scholar 

  50. Phillips PEM, Wightman RM (2003) Critical guidelines for validation of the selectivity of in-vivo chemical microsensors. TrAC Trends Anal Chem 22:509–514

    Article  CAS  Google Scholar 

  51. McCreery RL (2008) Advanced carbon electrode materials for molecular electrochemistry. Chem Rev 108:2646–2687

    Article  CAS  PubMed  Google Scholar 

  52. Takmakov P, Zachek MK, Keithley RB, Bucher ES, McCarty GS (2010) Characterization of local pH changes in brain using fast-scan cyclic voltammetry with carbon microelectrodes. Anal Chem 82:9892–9900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bucher ES, Brooks K, Verber MD, Keithley RB, Owesson-White C, Carroll S, Takmakov P, McKinney CJ, Wightman RM (2013) Flexible software platform for fast-scan cyclic voltammetry data acquisition and analysis. Anal Chem 85:10344–10353

    Article  CAS  PubMed  Google Scholar 

  54. Takmakov P, McKinney CJ, Carelli RM, Wightman RM (2011) Instrumentation for fast-scan cyclic voltammetry combined with electrophysiology for behavioral experiments in freely moving animals. Rev Sci Instrum 82:074302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bath BD, Michael DJ, Trafton BJ, Joseph JD, Runnels PL, Wightman RM (2000) Subsecond adsorption and desorption of dopamine at carbon-fiber microelectrodes. Anal Chem 72:5994–6002

    Article  CAS  PubMed  Google Scholar 

  56. Roberts JG, Moody BP, McCarty GS, Sombers LA (2010) Specific oxygen-containing functional groups on the carbon surface underlie an enhanced sensitivity to dopamine at electrochemically pretreated carbon Fiber microelectrodes. Langmuir 26:9116–9122

    Article  CAS  PubMed  Google Scholar 

  57. Trevathan JK, Yousefi A, Park HO, Bartoletta JJ, Ludwig KA, Lee KH, Lujan JL (2017) Computational modeling of neurotransmitter release evoked by electrical stimulation: nonlinear approaches to predicting stimulation-evoked dopamine release. ACS Chem Neurosci 8:394–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Strand AM, Venton BJ (2008) Flame etching enhances the sensitivity of carbon-fiber microelectrodes. Anal Chem 80:3708–3715

    Article  CAS  PubMed  Google Scholar 

  59. Poon M, McCreery RL (1986) In situ laser activation of glassy carbon electrodes. Anal Chem 58:2745–2750

    Article  CAS  Google Scholar 

  60. Yang C, Trikantzopoulos E, Nguyen MD, Jacobs CB, Wang Y, Mahjouri-Samani M, Ivanov IN, Venton BJ (2016) Laser treated carbon nanotube yarn microelectrodes for rapid and sensitive detection of dopamine in vivo. ACS Sens 1:508–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Roberts JG, Toups JV, Eyualem E, McCarty GS, Sombers LA (2013) In situ electrode calibration strategy for voltammetric measurements in vivo. Anal Chem 85:11568–11575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Feng JX, Brazell M, Renner K, Kasser R, Adams RN (1987) Electrochemical pretreatment of carbon fibers for in vivo electrochemistry: effects on sensitivity and response time. Anal Chem 59:1863–1867

    Article  CAS  PubMed  Google Scholar 

  63. Spanos M, Xie X, Gras-Najjar J, White SC, Sombers LA (2019) NMDA receptor-dependent cholinergic modulation of mesolimbic dopamine cell bodies: neurochemical and behavioral studies. ACS Chem Neurosci 10:1497–1505

    Article  CAS  PubMed  Google Scholar 

  64. Resendez SL, Keyes PC, Day JJ, Hambro C, Austin CJ, Maina FK, Eidson LN, Porter-Stransky KA, Nevarez N, McLean JW, Kuhnmuench MA, Murphy AZ, Matthews TA, Aragona BJ (2016) Dopamine and opioid systems interact within the nucleus accumbens to maintain monogamous pair bonds. elife 5:e15325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Xiao L, Chattree G, Oscos FG, Coa M, Wanat MJ, Roberts TF (2018) A basal ganglia circuit sufficient to guide birdsong learning. Neuron 98:208–221.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rees HR, Anderson SE, Privman E, Bau HH, Venton BJ (2015) Carbon Nanopipette electrodes for dopamine detection in Drosophila. Anal Chem 87:3849–3855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Makos MA, Kim Y-C, Han KA, Heien ML, Ewing AG (2009) In vivo electrochemical measurements of exogenously applied dopamine in Drosophila melanogaster. Anal Chem 81:1848–1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shon Y-M, Lee KH, Goerss SJ, Kim IY, Kimble C, Van Gompel JJ, Bennet K, Blaha CD, Chang SY (2010) High frequency stimulation of the subthalamic nucleus evokes striatal dopamine release in a large animal model of human DBS neurosurgery. Neurosci Lett 475:136–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schwerdt HN, Shimazu H, Amemori K-I, Amemori S, Tierney PL, Gibson DJ, Hong S, Yoshida T, Langer R, Cima MJ, Graybiel AM (2017) Long-term dopamine neurochemical monitoring in primates. Proc Natl Acad Sci U S A 114:13260–13265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ariansen J, Heien MLAV, Hermans A, Phillips PEM, Hernadi I, Bermudez MA, Shultz W, Wightman RM (2012) Monitoring extracellular pH, oxygen, and dopamine during reward delivery in the striatum of primates. Front Behav Neurosci 6:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kishida KT, Saez I, Lohrenz T, Witcher MR, Laxton AW, Tatter SB, White JP, Ellis TL, Phillips PEM, Montague PR (2016) Subsecond dopamine fluctuations in human striatum encode superposed error signals about actual and counterfactual reward. Proc Natl Acad Sci U S A 113:200–205

    Article  CAS  PubMed  Google Scholar 

  72. Votaw J, Byas-Smith M, Hua J, Voll R, Martarello L, Levey AI, Bowman D, Goodman M (2003) Interaction of isoflurane with the dopamine transporter. Anesthesiology 98:404–411

    Article  CAS  PubMed  Google Scholar 

  73. Brodnik ZD, España RA (2015) Dopamine uptake dynamics are preserved under isoflurane anesthesia. Neurosci Lett 606:129–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Adachi YU, Yamada S, Satomoto M, Higuchi H, Watanabe K, Kazama T (2005) Isoflurane anesthesia induces biphasic effect on dopamine release in the rat striatum. Brain Res Bull 67:176–181

    Article  CAS  PubMed  Google Scholar 

  75. Rodeberg NT, Sandberg SG, Johnson JA, Phillips PEM, Wightman RM (2017) Hitchhiker’s guide to voltammetry: acute and chronic electrodes for in vivo fast-scan cyclic voltammetry. ACS Chem Neurosci 8:221–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Deisseroth K (2011) Optogenetics. Nat Methods 8:26–29

    Article  CAS  PubMed  Google Scholar 

  77. Adamantidis AR, Tsai H-C, Boutrel B, Zhang F, Stuber GD, Budygin EA, Tourino C, Bonci A, Deisseroth K, de Lecea L (2011) Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward-seeking behavior. J Neurosci 31:10829–10835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kozai TD, Vazquez AL (2015) Photoelectric artefact from optogenetics and imaging on microelectrodes and bioelectronics: new challenges and opportunities. J Mater Chem B 3:4965–4978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL (2007) Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci U S A 104:5163–5168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Calipari ES, Juarez B, Morel C, Walker DM, Cahill ME, Ribeiro E, Roman-Ortiz C, Ramakrishnan C, Deisseroth K, Han M-H, Nestler EJ (2017) Dopaminergic dynamics underlying sex-specific cocaine reward. Nat Commun 8:13877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Roth BL (2016) DREADDs for neuroscientists. Neuron 89:683–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zachek MK, Takmakov P, Park J, Wightman RM, McCarty GS (2010) Simultaneous monitoring of dopamine concentration at spatially different brain locations in vivo. Biosens Bioelectron 25:1179–1185

    Article  CAS  PubMed  Google Scholar 

  83. Dorta-Quiñones CI, Wang XY, Dokania RK, Gailey A, Lindau M, Apsel AB (2016) A wireless FSCV monitoring IC with analog background subtraction and UWB telemetry. IEEE Trans Biomed Circuits Syst 10:289–299

    Article  PubMed  Google Scholar 

  84. Roham M, Daberkow DP, Ramsson ES, Covey DP, Pakdeeronachit S, Garris PA, Mohseni P (2008) A wireless IC for wide-range neurochemical monitoring using amperometry and fast-scan cyclic voltammetry. IEEE Trans Biomed Circuits Syst 2:3–9

    Article  CAS  PubMed  Google Scholar 

  85. Zamani H, Bahrami HR, Chalwadi P, Garris PA, Mohseni P (2017) C–FSCV: compressive fast-scan cyclic voltammetry for brain dopamine recording. IEEE Trans Neural Syst Rehabil Eng 26:51–59

    Article  Google Scholar 

  86. Bennet KE, Tomshine JR, Min H-K, Manciu FS, Marsh MP, Paek SB, Settell ML, Nicolai EN, Blaha CD, Kouzani AZ, Chang S-Y, Lee KH (2016) A diamond-based electrode for detection of neurochemicals in the human brain. Front Hum Neurosci 10:102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ross AE, Venton BJ (2012) Nafion–CNT coated carbon-fiber microelectrodes for enhanced detection of adenosine. Analyst 137:3045–3051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang DA, Rand E, Marsh M, Andrews RJ, Lee KH, Meyyappan M, Koehne JE (2013) Carbon nanofiber electrode for neurochemical monitoring. Mol Neurobiol 48:380–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Brazell MP, Kasser RJ, Renner KJ, Feng J, Moghaddam B, Adams RN (1987) Electrocoating carbon fiber microelectrodes with Nafion improves selectivity for electroactive neurotransmitters. J Neurosci Methods 22:167–172

    Article  CAS  PubMed  Google Scholar 

  90. Vreeland RF, Atcherley CW, Russell WS, Xie JY, Lu D, Laude ND, Porreca F, Heien ML (2015) Biocompatible PEDOT:Nafion composite electrode coatings for selective detection of neurotransmitters in vivo. Anal Chem 87:2600–2607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Taylor IM, Robbins EM, Catt KA, Cody PA, Happe CL, Cui XT (2017) Enhanced dopamine detection sensitivity by PEDOT/graphene oxide coating on in vivo carbon fiber electrodes. 2D Mater Biosens Bioelectron 89:400–410

    Article  CAS  Google Scholar 

  92. Smith SK, Lugo-Morales LZ, Tang C, Gosrani SP, Lee CA, Roberts JG, Morton SW, McCarty GS, Khan SA, Sombers LA (2018) Quantitative comparison of enzyme immobilization strategies for glucose biosensing in real-time using fast-scan cyclic voltammetry coupled with carbon-Fiber microelectrodes. ChemPhysChem 19:1197–1204

    Article  CAS  PubMed  Google Scholar 

  93. Smith SK, Gosrani SP, Lee CA, McCarty GS, Sombers LA (2018) Carbon-fiber microbiosensor for monitoring rapid lactate fluctuations in brain tissue using fast-scan cyclic voltammetry. Anal Chem 90:12994–12999

    Article  CAS  PubMed  Google Scholar 

  94. Smith SK, Lee CA, Dausch ME, Horman BM, Patisaul HB, McCarty GS, Sombers LA (2017) Simultaneous voltammetric measurements of glucose and dopamine demonstrate the coupling of glucose availability with increased metabolic demand in the rat striatum. ACS Chem Neurosci 8:272–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Logman MJ, Budygin EA, Gainetdinov RR, Wightman RM (2000) Quantitation of in vivo measurements with carbon fiber microelectrodes. J Neurosci Methods 95:95–102

    Article  CAS  PubMed  Google Scholar 

  96. Rodeberg NT, Johnson JA, Cameron CM, Saddoris MP, Carelli RM, Wightman RM (2015) Construction of training sets for valid calibration of in vivo cyclic voltammetric data by principal component analysis. Anal Chem 87:11484–11491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Willuhn I, Burgeno LM, Groblewski PA, Phillips PE (2014) Excessive cocaine use results from decreased phasic dopamine signaling in the striatum. Nat Neurosci 17:704–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Johnson JA, Rodeberg NT, Wightman RM (2016) Failure of standard training sets in the analysis of fast-scan cyclic voltammetry data. ACS Chem Neurosci 7:349–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Heien MLAV, Khan AS, Ariansen JL, Cheer JF, Phillips PEM, Wassum KM, Wightman RM (2005) Real-time measurement of dopamine fluctuations after cocaine in the brain of behaving rats. Proc Natl Acad Sci U S A 102:10023–10028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Meunier CJ, Roberts JG, McCarty GS, Sombers LA (2017) Background signal as an in situ predictor of dopamine oxidation potential: improving interpretation of fast-scan cyclic voltammetry data. ACS Chem Neurosci 8:411–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Liu X, Zhang M, Xiao T, Hao J, Li R, Mao L (2016) Protein pretreatment of microelectrodes enables in vivo electrochemical measurements with easy precalibration and interference-free from proteins. Anal Chem 88:7238–7244

    Article  CAS  PubMed  Google Scholar 

  102. Abdalla A, Atcherley CW, Pathirathna P, Samaranayake S, Qiang B, Peña E, Morgan SL, Heien ML, Hashemi P (2017) In vivo ambient serotonin measurements at carbon-fiber microelectrodes. Anal Chem 89:9703–9711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Atcherley CW, Laude ND, Parent KL, Heien ML (2013) Fast-scan controlled-adsorption voltammetry for the quantification of absolute concentrations and adsorption dynamics. Langmuir 29:14885–14892

    Article  CAS  PubMed  Google Scholar 

  104. Oh Y, Park C, Kim DH, Shin H, Kang YM, DeWaele M, Lee J, Min H-K, Blaha CD, Bennet KE, Kim IY, Lee KH, Jang DP (2016) Monitoring in vivo changes in tonic extracellular dopamine level by charge-balancing multiple waveform fast-scan cyclic voltammetry. Anal Chem 88:10962–10970

    Article  CAS  PubMed  Google Scholar 

  105. Borman RP, Wang Y, Nguyen MD, Ganesana M, Lee ST, Venton BJ (2017) Automated algorithm for detection of transient adenosine release. ACS Chem Neurosci 8:386–393

    Article  CAS  PubMed  Google Scholar 

  106. Lee CA, Qi L, Amos A, Blanton K, McCarty GS, Sombers LA (2018) Reducing data density in fast-scan cyclic voltammetry measurements of dopamine dynamics. J Electrochem Soc 165:G3042–G3050

    Article  CAS  Google Scholar 

  107. Amos AN, Roberts JG, Qi L, Sombers LA, McCarty GS (2014) Reducing the sampling rate of biochemical measurements using fast-scan cyclic voltammetry for in vivo applications. IEEE Sensors J 14:2975–2980

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research in the Sombers laboratory on these topics has been funded by grants from the National Institutes of Health, the National Science Foundation, and NCSU Department of Chemistry. C.J.M. is supported by an NSF Graduate Research Fellowship (DGE-1252376). In addition, we gratefully acknowledge our colleagues and coworkers, past and present, for many of the studies cited in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie A. Sombers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Meunier, C.J., Sombers, L.A. (2021). Fast-Scan Voltammetry for In Vivo Measurements of Neurochemical Dynamics. In: Fakhoury, M. (eds) The Brain Reward System. Neuromethods, vol 165. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1146-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1146-3_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1145-6

  • Online ISBN: 978-1-0716-1146-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics