Skip to main content

Induced Dimerization Tools to Deplete Specific Phosphatidylinositol Phosphates

  • Protocol
  • First Online:
Phosphoinositides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2251))

Abstract

Chemical dimerization systems have been used to drive acute depletion of polyphosphoinsitides (PPIns). They do so by inducing subcellular localization of enzymes that catabolize PPIns. By using this approach, all seven PPIns can be depleted in living cells and in real time. The rapid permeation of dimerizer agents and the specific expression of recruiter proteins confer great spatial and temporal resolution with minimal cell perturbation. In this chapter, we provide detailed instructions to monitor and induce depletion of PPIns in live cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dickson EJ, Hille B (2019) Understanding phosphoinositides: rare, dynamic, and essential membrane phospholipids. Biochem J 476(1):1–23. https://doi.org/10.1042/BCJ20180022

    Article  CAS  PubMed  Google Scholar 

  2. Wills RC, Goulden BD, Hammond GRV (2018) Genetically encoded lipid biosensors. Mol Biol Cell 29(13):1526–1532. https://doi.org/10.1091/mbc.E17-12-0738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fegan A, White B, Carlson JC, Wagner CR (2010) Chemically controlled protein assembly: techniques and applications. Chem Rev 110(6):3315–3336. https://doi.org/10.1021/cr8002888

    Article  CAS  PubMed  Google Scholar 

  4. DeRose R, Miyamoto T, Inoue T (2013) Manipulating signaling at will: chemically-inducible dimerization (CID) techniques resolve problems in cell biology. Pflugers Arch 465(3):409–417. https://doi.org/10.1007/s00424-012-1208-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Spencer DM, Wandless TJ, Schreiber SL, Crabtree GR (1993) Controlling signal transduction with synthetic ligands. Science 262(5136):1019–1024. https://doi.org/10.1126/science.769436510.1126/science.7694365

    Article  CAS  PubMed  Google Scholar 

  6. Chen J, Zheng XF, Brown EJ, Schreiber SL (1995) Identification of an 11-kDa FKBP12-rapamycin-binding domain within the 289-kDa FKBP12-rapamycin-associated protein and characterization of a critical serine residue. Proc Natl Acad Sci U S A 92(11):4947–4951. https://doi.org/10.1073/pnas.92.11.4947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Banaszynski LA, Liu CW, Wandless TJ (2005) Characterization of the FKBP.Rapamycin.FRB ternary complex. J Am Chem Soc 127(13):4715–4721. https://doi.org/10.1021/ja043277y

    Article  CAS  PubMed  Google Scholar 

  8. Bayle JH, Grimley JS, Stankunas K, Gestwicki JE, Wandless TJ, Crabtree GR (2006) Rapamycin analogs with differential binding specificity permit orthogonal control of protein activity. Chem Biol 13(1):99–107. https://doi.org/10.1016/j.chembiol.2005.10.017

    Article  CAS  PubMed  Google Scholar 

  9. Hentges KE, Sirry B, Gingeras AC, Sarbassov D, Sonenberg N, Sabatini D, Peterson AS (2001) FRAP/mTOR is required for proliferation and patterning during embryonic development in the mouse. Proc Natl Acad Sci U S A 98(24):13796–13801. https://doi.org/10.1073/pnas.241184198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS, Schreiber SL (1994) A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369(6483):756–758. https://doi.org/10.1038/369756a0

    Article  CAS  PubMed  Google Scholar 

  11. Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH (1994) RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78(1):35–43. https://doi.org/10.1016/0092-8674(94)90570-3

    Article  CAS  PubMed  Google Scholar 

  12. Albers MW, Williams RT, Brown EJ, Tanaka A, Hall FL, Schreiber SL (1993) FKBP-rapamycin inhibits a cyclin-dependent kinase activity and a cyclin D1-Cdk association in early G1 of an osteosarcoma cell line. J Biol Chem 268(30):22825–22829

    Article  CAS  PubMed  Google Scholar 

  13. Dumont FJ, Su Q (1996) Mechanism of action of the immunosuppressant rapamycin. Life Sci 58(5):373–395. https://doi.org/10.1016/0024-3205(95)02233-3

    Article  CAS  PubMed  Google Scholar 

  14. Jayaraman T, Brillantes AM, Timerman AP, Fleischer S, Erdjument-Bromage H, Tempst P, Marks AR (1992) FK506 binding protein associated with the calcium release channel (ryanodine receptor). J Biol Chem 267(14):9474–9477

    Article  CAS  PubMed  Google Scholar 

  15. Wang T, Donahoe PK, Zervos AS (1994) Specific interaction of type I receptors of the TGF-beta family with the immunophilin FKBP-12. Science 265(5172):674–676. https://doi.org/10.1126/science.7518616

    Article  CAS  PubMed  Google Scholar 

  16. Cameron AM, Steiner JP, Sabatini DM, Kaplin AI, Walensky LD, Snyder SH (1995) Immunophilin FK506 binding protein associated with inositol 1,4,5-trisphosphate receptor modulates calcium flux. Proc Natl Acad Sci U S A 92(5):1784–1788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fischer G, Wittmann-Liebold B, Lang K, Kiefhaber T, Schmid FX (1989) Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature 337(6206):476–478. https://doi.org/10.1038/337476a0

    Article  CAS  PubMed  Google Scholar 

  18. Brillantes AB, Ondrias K, Scott A, Kobrinsky E, Ondriasova E, Moschella MC, Jayaraman T, Landers M, Ehrlich BE, Marks AR (1994) Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein. Cell 77(4):513–523. https://doi.org/10.1016/0092-8674(94)90214-3

    Article  CAS  PubMed  Google Scholar 

  19. Ahern GP, Junankar PR, Dulhunty AF (1994) Single channel activity of the ryanodine receptor calcium release channel is modulated by FK-506. FEBS Lett 352(3):369–374. https://doi.org/10.1016/0014-5793(94)01001-3

    Article  CAS  PubMed  Google Scholar 

  20. Cameron AM, Nucifora FC Jr, Fung ET, Livingston DJ, Aldape RA, Ross CA, Snyder SH (1997) FKBP12 binds the inositol 1,4,5-trisphosphate receptor at leucine-proline (1400-1401) and anchors calcineurin to this FK506-like domain. J Biol Chem 272(44):27582–27588. https://doi.org/10.1074/jbc.272.44.27582

    Article  CAS  PubMed  Google Scholar 

  21. Cameron AM, Steiner JP, Roskams AJ, Ali SM, Ronnett GV, Snyder SH (1995) Calcineurin associated with the inositol 1,4,5-trisphosphate receptor-FKBP12 complex modulates Ca2+ flux. Cell 83(3):463–472. https://doi.org/10.1016/0092-8674(95)90124-8

    Article  CAS  PubMed  Google Scholar 

  22. Shin DW, Pan Z, Bandyopadhyay A, Bhat MB, Kim DH, Ma J (2002) Ca(2+)-dependent interaction between FKBP12 and calcineurin regulates activity of the Ca(2+) release channel in skeletal muscle. Biophys J 83(5):2539–2549. https://doi.org/10.1016/s0006-3495(02)75265-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang T, Li BY, Danielson PD, Shah PC, Rockwell S, Lechleider RJ, Martin J, Manganaro T, Donahoe PK (1996) The immunophilin FKBP12 functions as a common inhibitor of the TGF beta family type I receptors. Cell 86(3):435–444. https://doi.org/10.1016/s0092-8674(00)80116-6

    Article  CAS  PubMed  Google Scholar 

  24. Pollock R, Issner R, Zoller K, Natesan S, Rivera VM, Clackson T (2000) Delivery of a stringent dimerizer-regulated gene expression system in a single retroviral vector. Proc Natl Acad Sci U S A 97(24):13221–13226. https://doi.org/10.1073/pnas.230446297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Terrillon S, Bouvier M (2004) Receptor activity-independent recruitment of βarrestin2 reveals specific signalling modes. EMBO J 20-23:3950–3961. https://doi.org/10.1038/sj.emboj.7600387

    Article  CAS  Google Scholar 

  26. Muthuswamy SK, Gilman M, Brugge JS (1999) Controlled dimerization of ErbB receptors provides evidence for differential signaling by homo- and heterodimers. Mol Cell Biol 19(10):6845–6857. https://doi.org/10.1128/mcb.19.10.6845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Amara JF, Clackson T, Rivera VM, Guo T, Keenan T, Natesan S, Pollock R, Yang W, Courage NL, Holt DA, Gilman M (1997) A versatile synthetic dimerizer for the regulation of protein-protein interactions. Proc Natl Acad Sci U S A 94(20):10618–10623. https://doi.org/10.1073/pnas.94.20.10618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liberles SD, Diver ST, Austin DJ, Schreiber SL (1997) Inducible gene expression and protein translocation using nontoxic ligands identified by a mammalian three-hybrid screen. Proc Natl Acad Sci U S A 94(15):7825–7830. https://doi.org/10.1073/pnas.94.15.7825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pollock R, Giel M, Linher K, Clackson T (2002) Regulation of endogenous gene expression with a small-molecule dimerizer. Nat Biotechnol 20(7):729–733. https://doi.org/10.1038/nbt0702-729

    Article  CAS  PubMed  Google Scholar 

  30. Briesewitz R, Ray GT, Wandless TJ, Crabtree GR (1999) Affinity modulation of small-molecule ligands by borrowing endogenous protein surfaces. Proc Natl Acad Sci U S A 96(5):1953–1958. https://doi.org/10.1073/pnas.96.5.1953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Feng S, Laketa V, Stein F, Rutkowska A, MacNamara A, Depner S, Klingmuller U, Saez-Rodriguez J, Schultz C (2014) A rapidly reversible chemical dimerizer system to study lipid signaling in living cells. Angew Chem Int Ed Engl 53(26):6720–6723. https://doi.org/10.1002/anie.201402294

    Article  CAS  PubMed  Google Scholar 

  32. Schifferer M, Feng S, Stein F, Schultz C (2017) Reversible chemical dimerization by rCD1. Methods Enzymol 583:173–195. https://doi.org/10.1016/bs.mie.2016.10.035

    Article  CAS  PubMed  Google Scholar 

  33. Umeda N, Ueno T, Pohlmeyer C, Nagano T, Inoue T (2011) A photocleavable rapamycin conjugate for spatiotemporal control of small GTPase activity. J Am Chem Soc 133(1):12–14. https://doi.org/10.1021/ja108258d

    Article  CAS  PubMed  Google Scholar 

  34. Murata Y, Iwasaki H, Sasaki M, Inaba K, Okamura Y (2005) Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435(7046):1239–1243. https://doi.org/10.1038/nature03650

    Article  CAS  PubMed  Google Scholar 

  35. Laporte J, Hu LJ, Kretz C, Mandel JL, Kioschis P, Coy JF, Klauck SM, Poustka A, Dahl N (1996) A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat Genet 13(2):175–182. https://doi.org/10.1038/ng0696-175

    Article  CAS  PubMed  Google Scholar 

  36. Fili N, Calleja V, Woscholski R, Parker PJ, Larijani B (2006) Compartmental signal modulation: endosomal phosphatidylinositol 3-phosphate controls endosome morphology and selective cargo sorting. Proc Natl Acad Sci U S A 103(42):15473–15478. https://doi.org/10.1073/pnas.0607040103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Leslie NR, Downes CP (2004) PTEN function: how normal cells control it and tumour cells lose it. Biochem J 382(Pt 1):1–11. https://doi.org/10.1042/bj20040825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Goulden BD, Pacheco J, Dull A, Zewe JP, Deiters A, Hammond GRV (2019) A high-avidity biosensor reveals plasma membrane PI(3,4)P2 is predominantly a class I PI3K signaling product. J Cell Biol 218(3):1066–1079. https://doi.org/10.1083/jcb.201809026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zewe JP, Wills RC, Sangappa S, Goulden BD, Hammond GR (2018) SAC1 degrades its lipid substrate PtdIns4P in the endoplasmic reticulum to maintain a steep chemical gradient with donor membranes. Elife 7:e35588. https://doi.org/10.7554/eLife.35588

    Article  PubMed  PubMed Central  Google Scholar 

  40. Liu Y, Boukhelifa M, Tribble E, Morin-Kensicki E, Uetrecht A, Bear JE, Bankaitis VA (2008) The Sac1 phosphoinositide phosphatase regulates Golgi membrane morphology and mitotic spindle organization in mammals. Mol Biol Cell 19(7):3080–3096. https://doi.org/10.1091/mbc.E07-12-129010.1091/mbc.e07-12-1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu Y, Boukhelifa M, Tribble E, Bankaitis VA (2009) Functional studies of the mammalian Sac1 phosphoinositide phosphatase. Adv Enzym Regul 49(1):75–86. https://doi.org/10.1016/j.advenzreg.2009.01.006

    Article  CAS  Google Scholar 

  42. Sasaki T, Takasuga S, Sasaki J, Kofuji S, Eguchi S, Yamazaki M, Suzuki A (2009) Mammalian phosphoinositide kinases and phosphatases. Prog Lipid Res 48(6):307–343. https://doi.org/10.1016/j.plipres.2009.06.001

    Article  CAS  PubMed  Google Scholar 

  43. Attree O, Olivos IM, Okabe I, Bailey LC, Nelson DL, Lewis RA, McInnes RR, Nussbaum RL (1992) The Lowe's oculocerebrorenal syndrome gene encodes a protein highly homologous to inositol polyphosphate-5-phosphatase. Nature 358(6383):239–242. https://doi.org/10.1038/358239a0

    Article  CAS  PubMed  Google Scholar 

  44. Idevall-Hagren O, Dickson EJ, Hille B, Toomre DK, De Camilli P (2012) Optogenetic control of phosphoinositide metabolism. Proc Natl Acad Sci U S A 109(35):E2316–E2323. https://doi.org/10.1073/pnas.1211305109

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chang-Ileto B, Frere SG, Chan RB, Voronov SV, Roux A, Di Paolo G (2011) Synaptojanin 1-mediated PI(4,5)P2 hydrolysis is modulated by membrane curvature and facilitates membrane fission. Dev Cell 20(2):206–218. https://doi.org/10.1016/j.devcel.2010.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dyson JM, Fedele CG, Davies EM, Becanovic J, Mitchell CA (2012) Phosphoinositide phosphatases: just as important as the kinases. Subcell Biochem 58:215–279. https://doi.org/10.1007/978-94-007-3012-0_7

    Article  CAS  PubMed  Google Scholar 

  47. Bohdanowicz M, Balkin DM, De Camilli P, Grinstein S (2012) Recruitment of OCRL and Inpp5B to phagosomes by Rab5 and APPL1 depletes phosphoinositides and attenuates Akt signaling. Mol Biol Cell 23(1):176–187. https://doi.org/10.1091/mbc.E11-06-0489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Williams C, Choudhury R, McKenzie E, Lowe M (2007) Targeting of the type II inositol polyphosphate 5-phosphatase INPP5B to the early secretory pathway. J Cell Sci 120(Pt 22):3941–3951. https://doi.org/10.1242/jcs.014423

    Article  CAS  PubMed  Google Scholar 

  49. Ijuin T, Yu YE, Mizutani K, Pao A, Tateya S, Tamori Y, Bradley A, Takenawa T (2008) Increased insulin action in SKIP heterozygous knockout mice. Mol Cell Biol 28(17):5184–5195. https://doi.org/10.1128/mcb.01990-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Luo JM, Yoshida H, Komura S, Ohishi N, Pan L, Shigeno K, Hanamura I, Miura K, Iida S, Ueda R, Naoe T, Akao Y, Ohno R, Ohnishi K (2003) Possible dominant-negative mutation of the SHIP gene in acute myeloid leukemia. Leukemia 17(1):1–8. https://doi.org/10.1038/sj.leu.2402725

    Article  CAS  PubMed  Google Scholar 

  51. Marion E, Kaisaki PJ, Pouillon V, Gueydan C, Levy JC, Bodson A, Krzentowski G, Daubresse JC, Mockel J, Behrends J, Servais G, Szpirer C, Kruys V, Gauguier D, Schurmans S (2002) The gene INPPL1, encoding the lipid phosphatase SHIP2, is a candidate for type 2 diabetes in rat and man. Diabetes 51(7):2012–2017. https://doi.org/10.2337/diabetes.51.7.2012

    Article  CAS  PubMed  Google Scholar 

  52. Jacoby M, Cox JJ, Gayral S, Hampshire DJ, Ayub M, Blockmans M, Pernot E, Kisseleva MV, Compere P, Schiffmann SN, Gergely F, Riley JH, Perez-Morga D, Woods CG, Schurmans S (2009) INPP5E mutations cause primary cilium signaling defects, ciliary instability and ciliopathies in human and mouse. Nat Genet 41(9):1027–1031. https://doi.org/10.1038/ng.427

    Article  CAS  PubMed  Google Scholar 

  53. Bielas SL, Silhavy JL, Brancati F, Kisseleva MV, Al-Gazali L, Sztriha L, Bayoumi RA, Zaki MS, Abdel-Aleem A, Rosti RO, Kayserili H, Swistun D, Scott LC, Bertini E, Boltshauser E, Fazzi E, Travaglini L, Field SJ, Gayral S, Jacoby M, Schurmans S, Dallapiccola B, Majerus PW, Valente EM, Gleeson JG (2009) Mutations in INPP5E, encoding inositol polyphosphate-5-phosphatase E, link phosphatidyl inositol signaling to the ciliopathies. Nat Genet 41(9):1032–1036. https://doi.org/10.1038/ng.423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hammond GR, Machner MP, Balla T (2014) A novel probe for phosphatidylinositol 4-phosphate reveals multiple pools beyond the Golgi. J Cell Biol 205(1):113–126. https://doi.org/10.1083/jcb.201312072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health grant 1R35GM119412-01 (to G.R.V. Hammond).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald R. V. Hammond .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pacheco, J., Wills, R.C., Hammond, G.R.V. (2021). Induced Dimerization Tools to Deplete Specific Phosphatidylinositol Phosphates. In: Botelho, R.J. (eds) Phosphoinositides. Methods in Molecular Biology, vol 2251. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1142-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1142-5_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1141-8

  • Online ISBN: 978-1-0716-1142-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics