Skip to main content

The Use of Murine Infection Models to Investigate the Protective Role of TNF in Central Nervous System Tuberculosis

  • Protocol
  • First Online:
The TNF Superfamily

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2248))

  • 938 Accesses

Abstract

Tuberculosis of the central nervous system (CNS-TB) is the most severe form of extra-pulmonary tuberculosis that is often associated with high mortality. Secretion of tumor necrosis factor (TNF) has important protective and immune modulatory functions for immune responses during CNS-TB. Therefore, by combining the approaches of aerosol and intracerebral infection in mice, this chapter describes the methods to investigate the contribution of TNF in protective immunity against CNS-TB infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Be NA, Kim KS, Bishai WR et al (2009) Pathogenesis of central nervous system tuberculosis. Curr Mol Med 9:94–99

    Article  CAS  Google Scholar 

  2. Cherian A, Thomas SV (2011) Central nervous system tuberculosis. Afr Health Sci 11:116–127

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Rich A, Mccordick H (1933) The pathogenesis of tuberculous meningitis. Bull John Hopkins Hospital 52:5–37

    Google Scholar 

  4. Peterson PK, Gekker G, Hu S et al (1995) CD14 receptor-mediated uptake of nonopsonized Mycobacterium tuberculosis by human microglia. Infect Immun 63:1598–1602

    Article  CAS  Google Scholar 

  5. Rock RB, Hu S, Gekker G et al (2005) Mycobacterium tuberculosis-induced cytokine and chemokine expression by human microglia and astrocytes: effects of dexamethasone. J Infect Dis 192:2054–2058

    Article  CAS  Google Scholar 

  6. Spanos JP, Hsu NJ, Jacobs M (2015) Microglia are crucial regulators of neuro-immunity during central nervous system tuberculosis. Front Cell Neurosci 9:182

    Article  Google Scholar 

  7. Yang C-S, Lee H-M, Lee J-Y et al (2007) Reactive oxygen species and p47phox activation are essential for the Mycobacterium tuberculosis-induced pro-inflammatory response in murine microglia. J Neuroinflammation 4:27

    Article  Google Scholar 

  8. Randall PJ, Hsu N-J, Lang D et al (2014) Neurons are host cells for Mycobacterium tuberculosis. Infect Immun 82:1880–1890

    Article  Google Scholar 

  9. Randall PJ, Hsu NJ, Quesniaux V et al (2015) Mycobacterium tuberculosis infection of the “non-classical immune cell”. Immunol Cell Biol 93:789–795

    Article  CAS  Google Scholar 

  10. Di Filippo M, Sarchielli P, Picconi B et al (2008) Neuroinflammation and synaptic plasticity: theoretical basis for a novel, immune-centred, therapeutic approach to neurological disorders. Trends Pharmacol Sci 29:402–412

    Article  Google Scholar 

  11. Vezzani A, Fujinami RS, White HS et al (2016) Infections, inflammation and epilepsy. Acta Neuropathol 131:211–234

    Article  CAS  Google Scholar 

  12. Allie N, Grivennikov SI, Keeton R et al (2013) Prominent role for T cell-derived tumour necrosis factor for sustained control of Mycobacterium tuberculosis infection. Sci Rep 3:1809

    Article  Google Scholar 

  13. Flynn JL, Goldstein MM, Chan J et al (1995) Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 2:561–572

    Article  CAS  Google Scholar 

  14. Jacobs M, Togbe D, Fremond C et al (2007) Tumor necrosis factor is critical to control tuberculosis infection. Microbes Infect 9:623–628

    Article  CAS  Google Scholar 

  15. Gardam MA, Keystone EC, Menzies R et al (2003) Anti-tumour necrosis factor agents and tuberculosis risk: mechanisms of action and clinical management. Lancet Infect Dis 3:148–155

    Article  CAS  Google Scholar 

  16. Lynch K, Farrell M (2010) Cerebral tuberculoma in a patient receiving anti-TNF alpha (adalimumab) treatment. Clin Rheumatol 29:1201–1204

    Article  Google Scholar 

  17. Seong SS, Choi CB, Woo JH et al (2007) Incidence of tuberculosis in Korean patients with rheumatoid arthritis (RA): effects of RA itself and of tumor necrosis factor blockers. J Rheumatol 34:706–711

    CAS  PubMed  Google Scholar 

  18. Mastroianni CM, Paoletti F, Lichtner M et al (1997) Cerebrospinal fluid cytokines in patients with tuberculous meningitis. Clin Immunol Immunopathol 84:171–176

    Article  CAS  Google Scholar 

  19. Tobin DM, Roca FJ, Oh SF et al (2012) Host genotype-specific therapies can optimize the inflammatory response to mycobacterial infections. Cell 148:434–446

    Article  CAS  Google Scholar 

  20. Tsenova L, Bergtold A, Freedman VH et al (1999) Tumor necrosis factor alpha is a determinant of pathogenesis and disease progression in mycobacterial infection in the central nervous system. Proc Natl Acad Sci U S A 96:5657–5662

    Article  CAS  Google Scholar 

  21. Bette M, Kaut O, Schafer MK et al (2003) Constitutive expression of p55TNFR mRNA and mitogen-specific up-regulation of TNF alpha and p75TNFR mRNA in mouse brain. J Comp Neurol 465:417–430

    Article  CAS  Google Scholar 

  22. Figiel I, Dzwonek K (2007) TNFalpha and TNF receptor 1 expression in the mixed neuronal-glial cultures of hippocampal dentate gyrus exposed to glutamate or trimethyltin. Brain Res 1131:17–28

    Article  CAS  Google Scholar 

  23. Probert L (2015) TNF and its receptors in the CNS: the essential, the desirable and the deleterious effects. Neuroscience 302:2–22

    Article  CAS  Google Scholar 

  24. Lee J, Ling C, Kosmalski MM et al (2009) Intracerebral Mycobacterium bovis bacilli Calmette-Guerin infection-induced immune responses in the CNS. J Neuroimmunol 213:112–122

    Article  CAS  Google Scholar 

  25. Vezzani A, Moneta D, Richichi C et al (2002) Functional role of inflammatory cytokines and antiinflammatory molecules in seizures and epileptogenesis. Epilepsia 43(Suppl 5):30–35

    Article  CAS  Google Scholar 

  26. Francisco NM, Hsu NJ, Keeton R et al (2015) TNF-dependent regulation and activation of innate immune cells are essential for host protection against cerebral tuberculosis. J Neuroinflammation 12:125

    Article  Google Scholar 

  27. Hsu N-J, Fransisco N, Keeton R et al (2017) Myeloid and T cell derived TNF protects against central nervous system tuberculosis. Front Immunol 8:180

    Article  Google Scholar 

  28. Ford AL, Goodsall AL, Hickey WF et al (1995) Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting. Phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein-reactive CD4+ T cells compared. J Immunol 154:4309–4321

    CAS  PubMed  Google Scholar 

  29. Nikodemova M, Watters JJ (2012) Efficient isolation of live microglia with preserved phenotypes from adult mouse brain. J Neuroinflammation 9:147

    Article  CAS  Google Scholar 

  30. Sedgwick JD, Schwender S, Imrich H et al (1991) Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system. Proc Natl Acad Sci U S A 88:7438–7442

    Article  CAS  Google Scholar 

  31. Marino MW, Dunn A, Grail D et al (1997) Characterization of tumor necrosis factor-deficient mice. Proc Natl Acad Sci U S A 94:8093–8098

    Article  CAS  Google Scholar 

  32. Grivennikov SI, Tumanov AV, Liepinsh DJ et al (2005) Distinct and nonredundant in vivo functions of TNF produced by t cells and macrophages/neutrophils: protective and deleterious effects. Immunity 22:93–104

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muazzam Jacobs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hsu, NJ., Jacobs, M. (2021). The Use of Murine Infection Models to Investigate the Protective Role of TNF in Central Nervous System Tuberculosis. In: Bayry, J. (eds) The TNF Superfamily. Methods in Molecular Biology, vol 2248. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1130-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1130-2_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1129-6

  • Online ISBN: 978-1-0716-1130-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics