Skip to main content

Production of Multi-Subtype Influenza Virus-Like Particles by Molecular Fusion with BAFF or APRIL for Vaccine Development

  • Protocol
  • First Online:
The TNF Superfamily

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2248))

Abstract

Virus-like particle (VLP) technology is an alternative platform for developing vaccines to combat seasonal and pandemic influenza. Influenza VLPs are non-infectious nanoparticles that can elicit effective vaccine immunogenicity in hosts. B-cell-activating factor (BAFF, or BLyS) and a proliferation-inducing ligand (APRIL) are members of the tumor necrosis factor (TNF) superfamily of cytokines. Both BAFF and APRIL are homotrimers that interact with homotrimeric receptors. Here, we report a method of the production of influenza VLPs by molecular incorporation with BAFF or APRIL homotrimers to interact with their receptors. We engineered the VLPs by direct fusion of BAFF or APRIL to the transmembrane anchored domain of the hemagglutinin (HA) gene. We also describe procedures for the production of BAFF-VLPs containing H5H7 and H1H5H7 for multi-subtype vaccine development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haynes JR (2009) Influenza virus-like particle vaccines. Expert Rev Vaccines 8:435–445

    Article  CAS  Google Scholar 

  2. Lopez-Macias C (2012) Virus-like particle (VLP)-based vaccines for pandemic influenza: performance of a VLP vaccine during the 2009 influenza pandemic. Hum Vaccin Immunother 8:411–414

    Article  CAS  Google Scholar 

  3. Rossman JS, Lamb RA (2011) Influenza virus assembly and budding. Virology 411:229–236

    Article  CAS  Google Scholar 

  4. Bright RA, Carter DM, Crevar CJ et al (2008) Cross-clade protective immune responses to influenza viruses with H5N1 HA and NA elicited by an influenza virus-like particle. PLoS One 3:e1501

    Article  Google Scholar 

  5. Quan FS, Huang C, Compans RW et al (2007) Virus-like particle vaccine induces protective immunity against homologous and heterologous strains of influenza virus. J Virol 81:3514–3524

    Article  CAS  Google Scholar 

  6. Ross TM, Mahmood K, Crevar CJ (2009) A trivalent virus-like particle vaccine elicits protective immune responses against seasonal influenza strains in mice and ferrets. PLoS One 4:e6032

    Article  Google Scholar 

  7. Wei HJ, Chang W, Lin SC et al (2011) Fabrication of influenza virus-like particles using M2 fusion proteins for imaging single viruses and designing vaccines. Vaccine 29:7163–7172

    Article  CAS  Google Scholar 

  8. Giles BM, Crevar CJ, Carter DM et al (2012) A computationally optimized hemagglutinin virus-like particle vaccine elicits broadly reactive antibodies that protect nonhuman primates from H5N1 infection. J Infect Dis 205:1562–1570

    Article  CAS  Google Scholar 

  9. Giles BM, Ross TM (2011) A computationally optimized broadly reactive antigen (COBRA) based H5N1 VLP vaccine elicits broadly reactive antibodies in mice and ferrets. Vaccine 29:3043–3054

    Article  CAS  Google Scholar 

  10. Wu CY, Yeh YC, Chan JT et al (2012) A VLP vaccine induces broad-spectrum cross-protective antibody immunity against H5N1 and H1N1 subtypes of influenza A virus. PLoS One 7:e42363

    Article  CAS  Google Scholar 

  11. D'Aoust MA, Couture MM, Charland N et al (2010) The production of hemagglutinin-based virus-like particles in plants: a rapid, efficient and safe response to pandemic influenza. Plant Biotechnol J 8:607–619

    Article  CAS  Google Scholar 

  12. Landry N, Ward BJ, Trepanier S et al (2010) Preclinical and clinical development of plant-made virus-like particle vaccine against avian H5N1 influenza. PLoS One 5:e15559

    Article  CAS  Google Scholar 

  13. Lin SC, Liu WC, Lin YF et al (2013) Heterologous prime-boost immunization regimens using adenovirus vector and virus-like particles induce broadly neutralizing antibodies against H5N1 avian influenza viruses. Biotechnol J 8:1315–1322

    Article  CAS  Google Scholar 

  14. Hossain MJ, Bourgeois M, Quan FS et al (2011) Virus-like particle vaccine containing hemagglutinin confers protection against 2009 H1N1 pandemic influenza. Clin Vaccine Immunol 18:2010–2017

    Article  CAS  Google Scholar 

  15. Perrone LA, Ahmad A, Veguilla V et al (2009) Intranasal vaccination with 1918 influenza virus-like particles protects mice and ferrets from lethal 1918 and H5N1 influenza virus challenge. J Virol 83:5726–5734

    Article  CAS  Google Scholar 

  16. Richert LE, Servid AE, Harmsen AL et al (2012) A virus-like particle vaccine platform elicits heightened and hastened local lung mucosal antibody production after a single dose. Vaccine 30:3653–3665

    Article  CAS  Google Scholar 

  17. Wang BZ, Xu R, Quan FS et al (2010) Intranasal immunization with influenza VLPs incorporating membrane-anchored flagellin induces strong heterosubtypic protection. PLoS One 5:e13972

    Article  CAS  Google Scholar 

  18. Pearton M, Kang SM, Song JM et al (2010) Changes in human Langerhans cells following intradermal injection of influenza virus-like particle vaccines. PLoS One 5:e12410

    Article  Google Scholar 

  19. Quan FS, Kim YC, Vunnava A (2010) Intradermal vaccination with influenza virus-like particles by using microneedles induces protection superior to that with intramuscular immunization. J Virol 84:7760–7769

    Article  CAS  Google Scholar 

  20. Murphy K, Weaver C (2017) Janeway’s immunobiology, 9th edn. Garland Science, New York, London

    Google Scholar 

  21. Bossen C, Schneider P (2006) BAFF, APRIL and their receptors: structure, function and signaling. Semin Immunol 18:263–275

    Article  CAS  Google Scholar 

  22. Schuepbach-Mallepell S, Das D, Willen L et al (2015) Stoichiometry of heteromeric BAFF and APRIL cytokines dictates their receptor binding and signaling properties. J Biol Chem 290:16330–16342

    Article  CAS  Google Scholar 

  23. Melchers M, Bontjer I, Tong T et al (2012) Targeting HIV-1 envelope glycoprotein trimers to B cells by using APRIL improves antibody responses. J Virol 86:2488–2500

    Article  CAS  Google Scholar 

  24. Gupta S, Clark ES, Termini JM et al (2015) DNA vaccine molecular adjuvants SP-D-BAFF and SP-D-APRIL enhance anti-gp120 immune response and increase HIV-1 neutralizing antibody titers. J Virol 89:4158–4169

    Article  CAS  Google Scholar 

  25. Haley SL, Tzvetkov EP, Meuwissen S et al (2017) Targeting vaccine-induced extrafollicular pathway of B cell differentiation improves rabies postexposure prophylaxis. J Virol 91:e02435–e02416

    Article  CAS  Google Scholar 

  26. Haley SL, Tzvetkov EP, Lytle AG et al (2017) APRIL:TACI axis is dispensable for the immune response to rabies vaccination. Antivir Res 144:130–137

    Article  CAS  Google Scholar 

  27. Sakai J, Akkoyunlu M (2017) The role of BAFF system molecules in host response to pathogens. Clin Microbiol Rev 30:991–1014

    Article  CAS  Google Scholar 

  28. Hong JY, Chen TH, Chen YJ et al (2019) Highly immunogenic influenza virus-like particles containing B-cell-activating factor (BAFF) for multi-subtype vaccine development. Antivir Res 164:12–22

    Article  CAS  Google Scholar 

  29. Invitrogen (2015) Bac-to-Bac® Baculovirus Expression System an efficient site-specific transposition system to generate baculovirus for high-level expression of recombinant proteins. http://tools.thermofisher.com/content/sfs/manuals/bactobac_man.pdf. Accessed 13 Aug 2015

  30. Liu WC, Liu YY, Chen TH et al (2016) Multi-subtype influenza virus-like particles incorporated with flagellin and granulocyte-macrophage colony-stimulating factor for vaccine design. Antivir Res 133:110–118

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the International Institute of Macromolecular Analysis and Nanomedicine Innovation, National Cheng Kung University, Taiwan, for TEM analysis. This work was supported by the Ministry of Science and Technology, Taiwan (MOST108-2321-B-007-001, MOST108-2321-B-002-006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suh-Chin Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chen, TH., Hong, JY., Liu, CC., Chen, CC., Jan, JT., Wu, SC. (2021). Production of Multi-Subtype Influenza Virus-Like Particles by Molecular Fusion with BAFF or APRIL for Vaccine Development. In: Bayry, J. (eds) The TNF Superfamily. Methods in Molecular Biology, vol 2248. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1130-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1130-2_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1129-6

  • Online ISBN: 978-1-0716-1130-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics