Skip to main content

Sedimentation Velocity Methods for the Characterization of Protein Heterogeneity and Protein Affinity Interactions

  • Protocol
  • First Online:
Multiprotein Complexes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2247))

Abstract

Sedimentation velocity analytical ultracentrifugation is a powerful and versatile tool for the characterization of proteins and macromolecular complexes in solution. The direct modeling of the sedimentation process using modern computational strategies allows among others to assess the homogeneity/heterogeneity state of protein samples and to characterize protein associations. In this chapter, we will provide theoretical backgrounds and protocols to analyze the size distribution of protein samples and to determine the affinity of protein–protein hetero-associations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arthur KK, Kendrick BS, Gabrielson JP (2015) Guidance to achieve accurate aggregate quantitation in biopharmaceuticals by SV-AUC. Methods Enzymol 562:477–500

    Article  CAS  Google Scholar 

  2. Correia JJ, Stafford WF (2015) Sedimentation velocity: a classical perspective. Methods Enzymol 562:49–80

    Article  CAS  Google Scholar 

  3. Zhao H, Mayer ML, Schuck P (2014) Analysis of protein interactions with picomolar binding affinity by fluorescence-detected sedimentation velocity. Anal Chem 86:3181–3187

    Article  CAS  Google Scholar 

  4. Kingsbury JS, Laue TM (2011) Fluorescence-detected sedimentation in dilute and highly concentrated solutions. Methods Enzymol 492:283–304

    Article  CAS  Google Scholar 

  5. Schuck P (2013) Analytical ultracentrifugation as a tool for studying protein interactions. Biophys Rev 5:159–171

    Article  CAS  Google Scholar 

  6. Le Roy A, Wang K, Schaack B, Schuck P, Breyton C, Ebel C (2015) AUC and small-angle scattering for membrane proteins. Methods Enzymol 562:257–286

    Article  Google Scholar 

  7. Unzai S (2018) Analytical ultracentrifugation in structural biology. Biophys Rev 10:229–233

    Article  CAS  Google Scholar 

  8. Salvay AG, Communie G, Ebel C (2012) Sedimentation velocity analytical ultracentrifugation for intrinsically disordered proteins. Methods Mol Biol 896:91–105

    Article  CAS  Google Scholar 

  9. Tabarani G, Reina JJ, Ebel C, Vivès C, Lortat-Jacob H, Rojo J, Fieschi F (2006) Mannose hyperbranched dendritic polymers interact with clustered organization of DC-SIGN and inhibit gp120 binding. FEBS Lett 580:2402–2408

    Article  CAS  Google Scholar 

  10. Dach I, Olesen C, Signor L, Nissen P, le Maire M, Møller JV, Ebel C (2012) Active detergent-solubilized H+,K+-ATPase is a monomer. J Biol Chem 287:41963–41978

    Article  CAS  Google Scholar 

  11. Rocco M, Byron O (2015) Computing translational diffusion and sedimentation coefficients: an evaluation of experimental data and programs. Eur Biophys J 44:417–431

    Article  Google Scholar 

  12. Chaturvedi SK, Ma J, Brown PH, Zhao H, Schuck P (2018) Measuring macromolecular size distributions and interactions at high concentrations by sedimentation velocity. Nat Commun 9:4415

    Article  Google Scholar 

  13. Lebowitz J, Lewis MS, Schuck P (2002) Modern analytical ultracentrifugation in protein science: a tutorial review. Protein Sci 11:2067–2079

    Article  CAS  Google Scholar 

  14. Schuck P (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J 78:1606–1619

    Article  CAS  Google Scholar 

  15. Dam J, Schuck P (2004) Calculating sedimentation coefficient distributions by direct modeling of sedimentation velocity concentration profiles. Methods Enzymol 384:185–212

    Article  CAS  Google Scholar 

  16. Zhao H, Ghirlando R, Alfonso C, Arisaka F, Attali I, Bain DL, Bakhtina MM, Becker DF, Bedwell GJ, Bekdemir A, Besong TMD, Birck C, Brautigam CA, Brennerman W, Byron O, Bzowska A, Chaires JB, Chaton CT, Cölfen H, Connaghan KD, Crowley KA, Curth U, Daviter T, Dean WL, Díez AI, Ebel C, Eckert DM, Eisele LE, Eisenstein E, England P, Escalante C, Fagan JA, Fairman R, Finn RM, Fischle W, de la Torre JG, Gor J, Gustafsson H, Hall D, Harding SE, Cifre JGH, Herr AB, Howell EE, Isaac RS, Jao S-C, Jose D, Kim S-J, Kokona B, Kornblatt JA, Kosek D, Krayukhina E, Krzizike D, Kusznir EA, Kwon H, Larson A, Laue TM, Le Roy A, Leech AP, Lilie H, Luger K, Luque-Ortega JR, Ma J, May CA, Maynard EL, Modrak-Wojcik A, Mok Y-F, Mücke N, Nagel-Steger L, Narlikar GJ, Noda M, Nourse A, Obsil T, Park CK, Park J-K, Pawelek PD, Perdue EE, Perkins SJ, Perugini MA, Peterson CL, Peverelli MG, Piszczek G, Prag G, Prevelige PE, Raynal BDE, Rezabkova L, Richter K, Ringel AE, Rosenberg R, Rowe AJ, Rufer AC, Scott DJ, Seravalli JG, Solovyova AS, Song R, Staunton D, Stoddard C, Stott K, Strauss HM, Streicher WW, Sumida JP, Swygert SG, Szczepanowski RH, Tessmer I, Toth RT, Tripathy A, Uchiyama S, Uebel SFW, Unzai S, Gruber AV, von Hippel PH, Wandrey C, Wang S-H, Weitzel SE, Wielgus-Kutrowska B, Wolberger C, Wolff M, Wright E, Wu Y-S, Wubben JM, Schuck P (2015) A multilaboratory comparison of calibration accuracy and the performance of external references in analytical ultracentrifugation. PLoS One 10:e0126420

    Article  Google Scholar 

  17. Zhao H, Balbo A, Brown PH, Schuck P (2011) The boundary structure in the analysis of reversibly interacting systems by sedimentation velocity. Methods 54:16–30

    Article  CAS  Google Scholar 

  18. Brautigam CA (2011) Using Lamm-equation modeling of sedimentation velocity data to determine the kinetic and thermodynamic properties of macromolecular interactions. Methods 54:4–15

    Article  CAS  Google Scholar 

  19. Zhao H, Brautigam CA, Ghirlando R, Schuck P (2013) Overview of current methods in sedimentation velocity and sedimentation equilibrium analytical ultracentrifugation. Curr Protoc Protein Sci. Chapter 20, Unit20.12

    Google Scholar 

  20. Stupfler B, Birck C, Seraphin B, Mauxion F (2016) BTG2 bridges PABPC1 RNA-binding domains and CAF1 deadenylase to control cell proliferation. Nat Commun 7:10811

    Article  CAS  Google Scholar 

  21. Balbo A, Minor KH, Velikovsky CA, Mariuzza RA, Peterson CB, Schuck P (2005) Studying multiprotein complexes by multisignal sedimentation velocity analytical ultracentrifugation. Proc Natl Acad Sci U S A 102:81–86

    Article  CAS  Google Scholar 

  22. Zhao H, Piszczek G, Schuck P (2015) SEDPHAT--a platform for global ITC analysis and global multi-method analysis of molecular interactions. Methods 76:137–148

    Article  CAS  Google Scholar 

  23. Zhao H, Schuck P (2015) Combining biophysical methods for the analysis of protein complex stoichiometry and affinity in SEDPHAT. Acta Crystallogr D Biol Crystallogr 71:3–14

    Article  CAS  Google Scholar 

  24. Brautigam CA (2015) Calculations and publication-quality illustrations for analytical ultracentrifugation data. Methods Enzymol 562:109–133

    Article  CAS  Google Scholar 

  25. Schuck P (2010) Sedimentation patterns of rapidly reversible protein interactions. Biophys J 98:2005–2013

    Article  CAS  Google Scholar 

  26. Demeler B (2010) Methods for the design and analysis of sedimentation velocity and sedimentation equilibrium experiments with proteins. Curr Protoc Protein Sci. Chapter 7, Unit 7.13

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support and the use of resources of the French Infrastructure for Integrated Structural Biology FRISBI ANR-10-INBS-05 and of Instruct-ERIC: the platforms of the Grenoble Instruct-ERIC center (ISBG: UMS 3518 CNRS-CEA-UGA-EMBL) within the Grenoble Partnership for Structural Biology (PSB) and the Strasbourg Instruct-ERIC center (Centre de Biologie Intégrative, CBI) within IGBMC (CNRS UMR 7104-Inserm U 1258-Université de Strasbourg). CE also acknowledges the support of the COST action CA 15126 MOBIEU and GRAL financed within the University Grenoble Alpes graduate school (Ecoles Universitaires de Recherche) CBH-EUR-GS (ANR-17-EURE-0003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christine Ebel or Catherine Birck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ebel, C., Birck, C. (2021). Sedimentation Velocity Methods for the Characterization of Protein Heterogeneity and Protein Affinity Interactions. In: Poterszman, A. (eds) Multiprotein Complexes. Methods in Molecular Biology, vol 2247. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1126-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1126-5_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1125-8

  • Online ISBN: 978-1-0716-1126-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics