Skip to main content

switchSENSE Technology for Analysis of DNA Polymerase Kinetics

  • Protocol
  • First Online:
Multiprotein Complexes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2247))

Abstract

The switchSENSE technology is a recent approach based on surface sensor chips for the analysis of interactions of macromolecules. The technology relies on electro-switchable DNA nanolevers tethered at one end on a gold surface via a sulfur linker and labeled with a Cy3 dye on the other end. The switchSENSE approach is effective in the determination of a large panel of biophysical parameters such as binding kinetics, dissociation constant, hydrodynamic radius, or melting temperature. In addition, it can also give access to some enzymatic data such as nuclease or polymerase activity. Here we describe a DNA polymerase assay that allows retrieving, in a single experimental set, association and dissociation rates, as well as the catalytic rate of the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rich RL, Myszka DG (2011) Survey of the 2009 commercial optical biosensor literature. J Mol Recognit 24:892–914

    Article  CAS  Google Scholar 

  2. Knezevic J, Langer A, Hampel PA et al (2012) Quantitation of affinity, avidity, and binding kinetics of protein analytes with a dynamically switchable biosurface. J Am Chem Soc 134:15225–15228

    Article  CAS  Google Scholar 

  3. Langer A, Hampel PA, Kaiser W et al (2013) Protein analysis by time-resolved measurements with an electro-switchable DNA chip. Nat Commun 4:2099

    Article  Google Scholar 

  4. Alt A, Dang HQ, Wells OS et al (2017) Specialized interfaces of Smc5/6 control hinge stability and DNA association. Nat Commun 8:14011

    Article  CAS  Google Scholar 

  5. Blocquel D, Li S, Wei N et al (2017) Alternative stable conformation capable of protein misinteraction links tRNA synthetase to peripheral neuropathy. Nucleic Acids Res 45:8091–8104

    Article  CAS  Google Scholar 

  6. Denichenko P, Mogilevsky M, Clery A et al (2019) Specific inhibition of splicing factor activity by decoy RNA oligonucleotides. Nat Commun 10:1590

    Article  Google Scholar 

  7. Nemoz C, Ropars V, Frit P et al (2018) XLF and APLF bind Ku80 at two remote sites to ensure DNA repair by non-homologous end joining. Nat Struct Mol Biol 25:971–980

    Article  CAS  Google Scholar 

  8. Ploschik D, Ronicke F, Beike H et al (2018) DNA primer extension with cyclopropenylated 7-Deaza-2′-deoxyadenosine and efficient bioorthogonal labeling in vitro and in living cells. Chembiochem 19:1949–1953

    Article  CAS  Google Scholar 

  9. Rueda FO, Bista M, Newton MD et al (2017) Mapping the sugar dependency for rational generation of a DNA-RNA hybrid-guided Cas9 endonuclease. Nat Commun 8:1610

    Article  Google Scholar 

  10. Webster MW, Chen YH, Stowell JAW et al (2018) mRNA deadenylation is coupled to translation rates by the differential activities of Ccr4-not nucleases. Mol Cell 70:1089–1100.e8

    Article  CAS  Google Scholar 

  11. Webster MW, Stowell JA, Passmore LA (2019) RNA-binding proteins distinguish between similar sequence motifs to promote targeted deadenylation by Ccr4-Not. elife 8:e40670

    Article  Google Scholar 

  12. Kroener F, Heerwig A, Kaiser W et al (2017) Electrical actuation of a DNA origami nanolever on an electrode. J Am Chem Soc 139:16510–16513

    Article  CAS  Google Scholar 

  13. Clery A, Sohier TJM, Welte T et al (2017) switchSENSE: a new technology to study protein-RNA interactions. Methods 118-119:137–145

    Article  CAS  Google Scholar 

  14. Langer A, Schraml M, Strasser R et al (2015) Polymerase/DNA interactions and enzymatic activity: multi-parameter analysis with electro-switchable biosurfaces. Sci Rep 5:12066

    Article  CAS  Google Scholar 

  15. Freisz S, Bec G, Radi M et al (2010) Crystal structure of HIV-1 reverse transcriptase bound to a non-nucleoside inhibitor with a novel mechanism of action. Angew Chem Int Ed Engl 49:1805–1808

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Ennifar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bec, G., Ennifar, E. (2021). switchSENSE Technology for Analysis of DNA Polymerase Kinetics. In: Poterszman, A. (eds) Multiprotein Complexes. Methods in Molecular Biology, vol 2247. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1126-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1126-5_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1125-8

  • Online ISBN: 978-1-0716-1126-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics